Nonlinear Systems
Third Edition

Solutions Manual

Hassan K. Khalil

PEARION .| TF I K & s AL
Prentice ﬁ Pubilishing House of Elecironics Indusiry

A Bttt tanaiw. phel com.cn

Hall




Chapter 1

¢ 1.1 Letzy =y, 2, =y, .. 7, =D,

% = 3

Epey = Tn
in glt,2y,...,2p0,u)
y = o

]

e 12 Letz =y, 23 =y®, ... 201 =y, g = 40D g (2,4 D)., yin-D) .

Y T2

il

Fnez = Dpoy

iﬂ"l = y(n-;) = Zp +gg(t, T1,Z2,...,Tp-1 )u
. . (8¢  Bgq. i) '
in = YW oglt g, 20 )i - (W"' Bz, =g e azf:z,,_l)u
= qlt,Z1,...,Z01,Zn + gaf- )u,u)
8 8
(9’ et oo+ a(0))
y -
*l3Letzi =y, 23=9M, . za=y" D 2001 =2, ..., Znpm = 2(™D,

i]=23

Tp1 = 2
En = g(zl,...,mn,z,..u,---,-‘tn+m,u)
Ep41 = Int2

Enm-1 = Tn4m
Tntm = U
y = n




sl4letzi=q33=¢, 2= [ :; ] € R*m,
:&1 = ¥
t3 = § = M7 (z1)[u= C(z1,72)2 = D13 = g(21))]

e 1.5 Let31=q1,32=q-'1| 23=92=xl=q.2'

i = z

. MgL k

Z = - -Iismzl - T(zl — Z3)
'.."'3 = X

. k 1
zy = j($1—23)+jﬂ

e 1.8 Let x; = q1, T2 = 1, %3 = q2, T4 = g2, where ; € B™.

il = I3

g2 = =M7Y(z1)[h(z1,22) + K(z1 - 25))
T3 = Iy

&y = J-IK(:Bl —33)4' J 1y

e 1.7 Let .
z=Az+Bu, y=Cz

be a state model of the linear system.
u=r—yt,y) =r—¥(t Cz)

Hence
&= Az - By(,Cz)+Br, y=Cz

* 1.8 (a) Let =6,zg=3,x3=E4, and u = Erp.

1 = Zy

£ = ﬁ— T —-r'lz sinz

&3 = - ﬁaz; + 28—coez;; + lu
T T T

(b) The equilibrium points are the roots of the equations

0 = =z
0 = 0815- Dzz — 2.0z5s8in1;
0 = =2723+1.7cosx +1.22
0.4075
=023 = ~—
snnr

Substituting zs in the third equation yields
(1.22+ 1.7cosz; ) sinz; — 1.10025=0

The foregoing equation has two roots z, = 0.4067 and z, = 1.6398 in the interval —x < z; < r. Due to
periodicity, 0.4067 + 2n7 and 1.6398 + 2n7 are also roots for n = *1,%2,.... Each root z; = z gives an




equilibrium point (z, 0,0.4075/ sinz).

(c) With E, = constant, the model reduces to

i = 23
. P D n .
X = H - ﬁxz - E]Eq SN x,

which is a pendulum equation with an input torque.
e 1.9 (a) Let 21 = ¢, 22 = vc.

i1 = ¢r=vLi=vc=12
4 = do=ai —Ii—ﬂ’——i]
z - C—CC-C 4 R L
1. . 1
= *C,-[‘l.-—losmkx]—ﬁzz]
(b) Let z; =iz, 22 = ve.
#1 = Iokcoskér ¢r=k\/IE —i}vc .

= k1§ -
2y = -]— [i.— T — lzz]
" T R
The model of (a) is more familiar since it is the pendulum equation.
» 1.10 (a) Let z; = ¢z, 22 = ve.

B = dlu,-—"v;, =vg =13
i3 = vYo=-xi li 2—-—:]

= %[‘s—sz—Mg—%tz]
(b) 23 =0 = Lz, +uz} =0 = z; = 0. There is a unique equilibrium point at the origin.
¢ 1.11 (a)
2=Az+Bu, y=Cr, u=sine
é=b;~0,=-b,=-y=~Cz
z= Az + Bsine, é=-C»

. (b)
0= Az+ Bsine = z=-A"'Bsine

0=Cz = —-CA™'Bsine=G(0)sine=0
G(0)#£0 = sine=0 = e=+nx, n=0,1,2,--- and z=0
(c) For G(s) =1/(18+1),take A= ~1/r, B=1/r and C = 1. Then '

. 1 1. .
Z==~z4 ~8ine, &€=-2
T T

Let z) = e, 22 = —2.
, . |
I, = I3, g == =g — =8I1E;
T T




e 1.12 The equation of motion is
Mij=Mg - ky - 19 — eaylg]
Let z; =y and zg = §.
. . k (]
EFp = X2, Ig =— —I

M - —ﬂzg - %22[23' +g

e 1.13 (a)
mjj = ~(ky + ka)y = ¢ + h(vo ~ §)

where ¢ > 0 is the viscous friction coefficient.
(b) A(v) = h(vo) ~ h'(vo)y.
mj = —(ky + k2)y — [c+ h'(vo)]i + h(vo)

(c¢) To obtain negative friction, we want ¢+ A'(vp) < 0. This can be achieved with the friction characteristic
of Figure 1.5(d) if v is in the range where the slope is negative and the magnitude of the negative siope is
greater than c.

¢ 1.14 The equation of motion is
Mt =F — Mgsin8 — k1 sgn(v) — kav — kav?®
where ky, k2, and ks are positive constants. Let z = v, u = F, and w = sin 4.

1
i=o [—kisgn(z) — kaz - ksa® + u] — gw

¢ 1.15 (a)
H= mi(y+Lm0)-m—(y+Lﬂcoa9) = m{§j + L cos® — L sin )

V= mf-(Lcoso)+mg m (--Lﬂsm0)+mg=—mL9mn0 mLé cosd +mg

Substituting V and H in the f-equation yields

I8 = Visin®— HLcos#
= —mL*(sin 0)® — mL6*sin @ cos @ + mgL sind
—mLijjcos @ — mL3§(cos8)? + mL3§ gin 6 cos §
= -mL*6{(sinf)? + (cos#)?) + mgLsind ~ mLijjcost
= -mL*§ +mgLsin6 ~ mLjjcosd
Substituting A in the j-equation yields
Mj=F —m(j+ Licosf — L§*sin6) —

®) mgLsind
20 5] =[ £ s misrame—s

where s
D) = I+mlL mLcoa&]

mLcoséd m+ M
det(D(6)) = (I +mL?)(m + M) = m®L? coe® 8 = A(6)




Hence,

|

Di8) = m+M -—mLcosd ]

A@) [ -mLcos8 I+mlL?

_ 1 m+M  -mLcost mgLsin6
~ A(f) | -mLcosbd I+mlL? F + mL#*sind — ky

()
# = 23
i, = 0 = hz—a)[(m+M)mgLsin9—mLcos€(F+mL§’sin6—kﬂ)]
= (1 )[(m+M)mgLsm.'cl-mLcos:c;(u+mLz,sma:; kz4d))
I3 = T4
2g = § A(a) [—m 2gsin @ cosd + (I + mL?)(F + mL§®sinf — ky)]
= ﬁ [-m2L%gsin 7, coszy + (I + mL*)(u + mLzgsing; — ka4)]
e 1.16 (a)
F,=m£—i(a:¢+Lsin9)=m:-;t-(.'i:,+Lécos0)=m(£,,+L§cosO—L0"sinﬂ)
F,= m%(Looeo) = m%(—Lésina) = —mLisin8 — mLé* cosd

Substituting F, and F, in the f-equation yields

-

I8 = u+ F,Leind ~ F,Lcost
= u-—-mL*#(sinf)® ~ mL**sin6cosd
—mLZ. cos® — mL?6(cos#)? + mL?6® sin @ cos §
= u~mL%(sin8)? + (cos®)?) - mLZ. cosd
= u—ml®§ ~ mL#.cosb

Substituting F. in the Z.-equation yields

Thus,

where

(b)

Hence,

20| ;. |= | msano iz,

IT+mI? mLcosd

D)= mLcosé m+ M

det(D(8)) = (I + mL?)(m + M) — m*L? cos* 6 = A(6)

D) = 1 m+M —mLcosé ]

A(G) | ~mLcos® I+mL?




61 _ 1 m+M -mLcoséf u
i, )~ A(#) | —-mLcos®@ I+mL? mL#?sinb — kz,

3 = 22

i = 0= ﬁ[(m+M)u—mLcoe8(mLé’sin0-—kzc)]
= e )[(m+M)u mlLcoszy(mLaZsinz) - - kz3)] .

.fs = 4

i = B = A(a)[ ~mLucosé + (I + mL?)}(mLé?sind — kzc)]

= ﬁ [-mLucoszy + (I + mL?)(mLz2 sinzy - kzs)]
(d) Take u = constant. Setting the derivatives #; = 0, we obtain z3 = z, = 0 and
0 = (m+ M)u+mkLzycoszy
0 = -mLucoszy — k(I +ml3)z,

Eliminating a between the two equations yields
sf(m + MY(I + mL?) —m®L?cog® 2] =u A(z1) =0

Since A(z;) > 0, equilibrium can be maintained only at « = 0. Then, z3 = 0. Thus, the system has an
equilibrium set {z2 = 23 = z4 = 0}.

¢ 1.17 (a) Let zy =iy, 23 = 1,, and z3 = w.

g o= — B b

3] I T + I,

. R 1 Yy
3 = . T3 chla!s + I.
&3 = -— E’f.‘ﬂs + %2-:!:1:!72

(b) Take v, = V, = constant and vy = u.
(c) Take vy = Vy = constant and v, = u. A constant field voltage implies that (at steady state) iy =

Vi /Ry dof Iy = constant. Hence, the model reduces to the second-oder linear model

. al
T3 = -"&32‘- —L.‘Fs-l-—-

La L, La
i3 = - %ms-i- ;f T3
(d) Let v=u.
5 = R';;R"::; + Li,-
g = - %:-zg - ;—1:133 + E
I3 = - ‘—I’-zs + %zlzg




¢ 1,18 (a)zl=y,32=3'h=3=i:"=

%

)

&3

(b) The equilibrium equations are

v.

T2

Ok 1, .

¥ = my+g+mF(u,t)

_1 . Lz
m 2a(l+z /a6)?
Loaz?

—_2m(a +2)?

kz
g mz

k
g= —ZI2

m
di
dt
9
L(y)
1
L(y)

1
-—-—L (31) [—R:l‘s -+

=4[ ¢
di [L(y)]
¢ ‘ dL .
T &%
) ¢ Ly .
B+ gy a@+yrap?
Loazzxs
(a+z,)? +u]

0 = %
_ k LoaZ3
0 =9 m 2m(a + £,)?
- _ LoaZa2s
0 = R.‘E;+(a+£l)z+ﬁ
Setfl zf, f’ =I.‘,and ﬁ-——‘f"- Th'en
2mg(a +r)?\'/?
Iy = ("‘—‘g‘io"a_r)—) » V= RI,
» 1.19 (a)
d R
a (/ A(a\) tﬂ.) = u5 —k\/pgh
0
ARk = u-—k/pgh
Letz=h

(b) 2 =p—- pa = pgh.

b= grglu- WAEL =z

&= A_(f}'i;;i‘" ~kVZ), u=2/(pg)

{c) At equilibrium,

0=

Hence, u,, = k,/pgr

Ugy — k\/szus

Ve =T =71




e 1.20 (a) From the equations v = w; — w, and p = p, + (pg/A)v, we have
p= 0= Bowi - wy) = Zig~1(ap) - v/By)
Using z = Ap as the state variable, we obtain
& =247 (2) - 4v3)
(b) At equilibrium we have
¢~ (B) = kvE

Writing # = ¢(10;), we can rewrite the previous equation as
@; = kyv/ ()

Hence,

(-t%" g &(1D;)

The solutions of this equation are given by the intersection of the curve (t;/k)? with the curve ¢(1;), which
is shown in Figure 1.29 of the text. From the figure, it is clear that there is only one intersection point.

s 1.21 (a) We have
h=wp—wy, p=w —uy
o _Pg. . _ P,
¥ ) A;vl’ D2 szz
wi=kvPi=p, wi=kvPr—Pa D1 - Ps =P(wp)
Let ¥y = p1 — ps and 23 = p2 — p,.
B = p = %(w,—un) = %[4#'1(21)—’81\/21—32'
3 = pg = %(wl-wa) = %[klvzl-zz-h!\/xil

(b) The equilibrium equations are

$7@) = hVvE-h
hvE =% = ka/E;
- From the second equation, we have
g k¥ ¥
=g
Substituting this expression in the first equilibrium equation yields
671(21) = keq/Fr,  where kug = "”‘:
1

Writing £, = ¢(15p), we can rewrite the previous equation as
Bp = keqy/ P(1Bp)

Hence,
@\ 2
(&) = o
The solutions of this equation are given by the intersection of the curve (1, /keq}® with the curve ¢(@,),
which is shown in Figure 1.29 of the text. From the figure, it is clear that there is only one intersection
point.




[ ] 1-22 (a)
= doyy—~dzy+n
Fp = d:'.'zf —d:cz -y
The assumptions ry = uz1, r3 = /¥ = u2, /Y, and 2y = 0 yield
#H = (p-dim;
7 = d{z2; —22) —um /Y

{b) When 4 = pmz2/(km + 22), the equilibrium equations are

- #m¥y
0 = (km”’ d)i;

bmZ18;
0 = d - o) — EmII¥2
(32}' 2) Y(k"ri'fz)
from the first equation,
i = Iz — — d
.’l:l—OOI'I +jz-d='>i‘2— !

Substituting £, = 0 in the second equilibrium equation yields £3 = z5;. Substituting Z; = knd/(tim — d) in
the second equilibrium equation yields

-t

Hence, there are two equilibrium points at
(Y (-’czr - tmd ) , Lmd ) and (0,25

pm~—d/)’ pm-—d
(c) When g = pnuz2/(km + 22 + k123), the equilibrium equations are
. pmEa _
0 = (mestem 9>
BmZ1 T3
0 = d - -
(22 = 22) Y (km + Z2 + k123)

from the first equation, Z; = 0 or Z; is the root of d = 1(2,). Since d < max.,>o{s{zs)}, the equation
d = u(Za) has two roots. Denote these roots by Z2, and Z55. Substituting Z = 0 in the second equilibrium
equation yields Z; = z3;. Substituting Z; = £,, in the second equilibrium equation yields

d(Zzy ~ Z25) ~ p(22.)51 /Y =0 = 3, = Y(zzy — 22a)

since u(ZF3,) = d. Similarly, substituting Z, = £3; in the second equilibrium equation vields %) = Y (xzy —
£43). Thus, there are three equilibrium points at

(Y (zas - 220),220)» (Y(Z2y — Zm), 20}, and (0,7ay)







Chapter 2

e 2.1 (1)
0=—31+2z?+=:3, == — &2

Zg=-33 = 0=2r(zx2-1) = 2,=0,1,0r ~1
There are three equilibrium points at (0,0), (1,~1), and {—1,1). Determine the type of each point using

linearization.
af _[-1+6z] 1
8z -1 -1
8l _[~1 1 _ _ '
5;(0,0)_[_1 -1 ] = Al,i—‘lﬂ:: = (Oio)lsast&blefocus
ﬂ = 5 1 = 1\1’3=2ﬂ:‘/§ =» (lvbl)maﬂaﬂdle
Oz}, 1y -1 =1
Similarly, (-1,1) is a saddle.
2
(2) s

0=2z(1423), 0= —z3+2}+ 229 — 23
0=:L'1(1+32) = 1 =00rz; =-1
=0 =>0=—£3+:L'§ = zy=00rz=1
I3 =-1 = 0=2—.’l'.'1"-3§ == n=1
There are three equilibrium points at (0,0), (0,1), and (1,-1). Determine the type of each point using
linearization.
2,_):_ 142z z
9z | 22-3z} —1+2234+m
a_f
Or

af
oz

=[1 0] > Az=1 -1 = (0,0)isasaddle
{0,0) 0 -1

=[f [1)] = A3=2,1 = (0,1)is unstable node

(0.2)

of

3 _[ 0 1 ] = Ma=-1%37V3 = (1,-1)is a stable focus

(1.~1) I

6

_ _ 2T129 _ L 28
0—(1 21)21 1+:1, D—(2 1+1‘1)zz




From the second equation, 2 = 0 or z2 = 2(1 + z1).

23=0 =2z =00rz; =1
ra=2(1+m) = 0=(21+3)2; = z=00rz; =-3

There are four equilibrium points at (0,6), (1,0), (0,2}, and (—3, —4). Notice that we have assumed 1+ z; #
0; otherwise the equation would not be well defined.

1-22 - (3w 258y
3 9 2

=[ g] Eigenvalues : 1,2 = (0,0) is unstable node

of _
=

==(0,0)

Bf . .

= 0 ; Eigenvalues: — 1,2 = (1,0) is a saddle
‘3(110)
%if =[—43 0 ] Eigenvalues : --3-2=.5(02)1sastablenode
x=(0,2)
_‘;% o™ [ 2 3] Eigenvalues : 7.722, ~0.772 = (-3, —4)nsasaddle
zax(—3,

(4)
0=z, O0=-z,+23(1~ +01 1

There is a unique equilibrium point at {(0,0). Determine its type using linearization.
8f _ 0 1
8z | -1-25173+04z}z; 1- 27 +0.1x}

gi =2 }] = Ma=(1/2)£iv3/2 = (0,0) is unstable focus
Z 0.0 . o

(5)
: =(z —22)(1 =23 ~23), O=(z1+22)(1~2f-13)

{z3 4 23 = 1} i3 an equilibrium set and (0,0) is an isolated equilibrium point.

2{ - 1-—32?-32*‘23132 —23112—1+32+33; — 1 -1
Bg”_’(o'ﬂ)- 1—32?—2;—-23133 —2::132'}-1—1'%-333 (oo)_ 1 1

Eigenvalues are 1 + j; hence, (0,0} is unstable focus.

(6)

0= ~z} + z3, 0=z ~z5
z2=2) 2 nn(1-2)=0=2 ny=00rzi=1

The equation z} = 1 has two real roots at z; = +1. Thus, there are three equilibrium points at (0,0), (1,1),

(_ls _1)
0.4: 1 _3:‘%




a
-5:{- [(1) [1) ; Eigenvalues : 1,—-1 = (0,0) is a saddle
z=(0,0)
af 1
o = Eigenvalyes : —2,—4 = (1,1) is a stable node
T |z=(1,1) -3

Similarly, (—1, -1} is a stable node.

2.2 (1)
0=2;, O0=-z;+(1/16)2} ~z;

z2=0 = 0=z1(z{-¥16) = z:=0,2 0r -2
There are three equilibrium points at (0,0), (2,0), and (-2,0). Determine the type of each point using
linearization.
Q o 1
-1+ (5/16)::1 -1
af o 1 , .
al =l a1 # has —(1/2) £ 3V3/2 = (0,0) is a stable focus
(0.0)
o1
Oz
Similarly, (—2,0) is a saddle.

{zo)=[2 _11] = A1‘2=—(l/2)ﬂ:\/ﬁ/2 = (2,0)isasaddle

(2)
0=25 -7y, O0=222—1z;
21(2-2:)=0 = zy=00rz3=2
=0 = z3=0, z=2 = 3{=1 = zZ;=lor -1
There are three equilibrium points at (0,0), (1,2), and (~1,2). Determine the type of each point using

Bf [2 T3 -z,]
-1
#luo~ L0 - ] o ha=hol = (00 sadd
afl [2 _1] Mz = ~(1/2)£jV15/2 = (1,2) s a stable focus
(1,2)
of 1
35'(-1.2) [ 1] Ma=-(1/DVIE2 = (-1, 2)§asublehm
(3

0=z, 0= —32-!0(21 —z3)
z20=0 = ¢(x))=0 = =0
There is a unique equilibrium point at (0,0). Determine its type by linearization.
af I [ 0 1 T o 1
(0.0) —3(21 - 13)2 -05 -1+ 3(31 bl 7} )2 +0.5 (0,0) - -0.5 =05

The eigenvalues are —(1/4) + j1/7/4. Hence, (0,0) is stable focus.




e 2.3 (1) The system has three equilibrium points: (0,0) is a stable focus, (1, -1) and (—1,1) are saddle
points. The phase portrait is shown in Figure 2.1. The stable trajectories of the saddle form a lobe around
the stable focus. All trajectories inside the lobe converge to the stable focus. All trajectories outside it

diverge to infinity.

(2) The system has three equilibrium points: (0, 0) is a saddle, (0,1) is unstable node, and (1, ~1) is a stable
focus. The phase portrait is shown in Figure 2.2. The z,-axis is a trajectory itself since 1 {t) = 0= £1(t) = 0.
The z,-axis is a separatrix. All trajectories in the right half converge to the stable focus. All trajectories in
the left have diverge to infinity. On the z;-axis itself, trajectories starting at 2 < 1 converge to the origin,
while trajectories starting at zz > 1 diverge to infinity.

3 5
2 \)\

0 »' o
-1
-2 \‘\
R T s 0 5
X X
Figure 2.1: Exercise 2.3(1). Figure 2.2: Exercise 2.3(2).

(8) The system has four equilibrium points: (0,0) is unstable node, (1, 0) is a saddle, (0, 2) is a stable node,
and (-3,-4) is a saddle. To avoid the condition z; + 1 = 0, we limit our analysis to the right half of
the plane, that is, {z; > 0}. This makes sense in view of the fact that the z,-axis is a trajectory since
7;(t) = 0 = #(t) = 0. Hence, trajectories starting in {2, > 0} stay there for all time. The phase por-
trait is shown in Figure 2.3. Notice that the z;-axis is a trajectory since z3(t) = 0 = 23(t) = 0. Itisa
separatrix that divides the half plane {z; > 0} into two quarters. All trajectories starting in the quarter
{z1 > 0, zz > 0} converge to the stable node {0,2). All trajectories starting in the quarter {2, > 0, z; < 0}
diverge to infinity. Trajectories starting on the x3-axis approach the stable node (0,2) if z5(0) > 0 and
diverge to infinity if z3(0) < 0. Trajectories starting on the z)-axis with z;(0) > O approach the saddle
(110)'

(4) There is a unique equilibrium point at the origin, which is unstable focus. The phase portrait is
shown in Figure 2.4. There are two limit cycles. The inner cycle is stable while the outer one is unstable.
Al trajectories starting inside the stable limit cycle, except the origin, approach it as ¢ tends to infinity.
Trajectories starting in the region between the two limit cycles approach the stable limit cycle. Trajectories
starting outside the unstable limit cycle diverge to infinity.

(5) The system has an equilibrium set at the unit circle and unstable focus at the origin. The phase portrait
is shown in Figure 2.5. All trajectories, except the origin, approach the unit circle at ¢ tends to infinity.

(8) The system has three equilibrium points: a saddle at (0,0) and stable nodes at (1,1) and (-1,-1).
The phase portrait is shown in Figure 2.6. The stable trajectories of the saddle lie on the line z; + z; = 0.
All trajectories to the right of this line converge to the stable node (1,1) and all trajectories to its left
converge to the stable node (-1, —1). Trajectories on the line z) + z; = 0 itself converge to the origin.




8
3
2 4
1 2
o Pt Pl
-1 -2
Y
-2 -4
-3
o 1 2 3 -8
x -5 0 5

Figure 2.3: Exercise 2.3(3). Figure 2.4: Exercise 2.3(4)

= f

S\"u

Figure 2.5: Exercise 2.3(5). Figure 2.6: Exercise 2.3(6).

¢ 2.4 (1) The system has three equilibrium points at (0,0), (a,0), and (—a, 0), where a is the root of
a=tan(a/2) = o= 23311

The Jacobian matrix is

8f _ [ 0 1
3z | 1-2/[1+ (21 +23)%] -2/[1+ (21 + 22)3) ]

af [ 0 1 ]
et = H Aa=-~-1, -1
8z i0,0) -1 -2 *

Although we have multiple eigenvalues, we can conclude that the origin is a stable node because f(z) is an
analytic function of z in the neighborhood of the origin.

of [ 0 1 ] .
- = = A2 =06892, -1 = (2.3311,0)is a saddle
B2 (3 3311.0) 0.6892 -0.3108 1 ( )

Similarly, (-2.3311,0) is a saddle. The phase portrait is shown in Fignre 2.7 with the arrowheads. The
stable trajectories of the two saddle points forms two separatrices, which divide the plane into three regions.
All trajectories in the middle region converge to the origin as ¢ tends to infinity. All trajectories in the outer




regions diverge to infinity.

(2)
0=x,(2-73), 0=2a%-1z

From the first equation, 2; = 0 or 3 = 2.
T1=0 = 20=0
=2 = zm=1 = z; = %1
There are three equilibrium points at (0,0), (1,2), and (-1, 2).

g 2 0 .
5;5 0 = [ 0 -1 ] = Maz=2 -1 = (0,0)is asaddle
off [0 -1 4 a\,=-(1/2)2vI5/2 = (1,2)is astable focus
Oz 1.2) 4 -1
8f 0 1 . .
= = = Ma=-—(1/2)£3V15/2 = (-1,2)is a stable focus
bzl g L-¢ 1

The phase portrait is shown in Figure 2.7 with the arrowheads. The stable trajectories of the saddle lie
on the To-axis. They form a separatrix that divides the plane in two halves. Trajectories in the right balf
converge to the stable focus (1,2) and those in the half converge to the stable focus (-1,2).

(3) There is a unique equilibrium point at the origin.

of
9% |(0,0)

The phase portrait is shown in Figure 2.7 with the arrcwheads. There is a stable limit cycle around the
origin. All trajectories, except the origin, approach the limit cycle as ¢ tends to infinity. :

=[_°1 }] = ha=(1/2)£5v3/2 = (-1,2)is unstable focus

(4) The equilibrium points are given by the real roots of the equation
0=y -2% +y

 where z; = y? and z; = 1—y. It can be seen that the equation has four roots at y == 0,1, (~1£+/5)/2. Hence,
there are four equilibrium points at (0,1), (1,0), ((3 — v5)/2,(3 - v5)/2), and (3 + v5)/2,(3 + v5)/2).
The following table shows the Jacobian matrix and the type of each point.

Point Jacobian matrix Eigenvalues Type

©,1) r 2 ] ~24142, 04142  saddle

(1,0) S0 ] 04142, —2.4142  saddle

(3 - VB)/2,(3 - VB)/2) r CLEe . ] ~0.2361, —2.2361 stable node
(8 + V5)/2,(3+ VB)/2) 3201 el ] 42361, 2.2361  unstable node




The phase portrait is shown in Figure 2.7 with the arrowheads. The stable trajectories of the saddle points
divide the plane into two regions. The region that contains the stable focus has the feature that all trajectories
inside it converge to the stable focus. All trajectories in the other region diverge to infinity.
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Figure 2.7: Phase portraits of Exercise 2.4.
e 2.5 (a) '
of _ [ -1+ z17z0(z) -B(z) + ze(z) ]
8z B(z) — Z2a(x) -1 - z1320a(2)

where

afz) = ! , B(5) = — ey
(@} + =) (10 /2% + 237 In /2 + 23

" Noting that lim;o #;2;0(z) =0 fori,j = 1,2 and limg_0 #(x} = 0, it can be seen that

%L_{;= [ -01 -?l] = the origin is a stable node

(b) Transform the state equation into the polar coordinates
=1/ 2 =tan-1 [ %2
r=— 2%‘}'32, B—tan (31)

F=—r = r(t)=ree?t

to obtain




and, for 0 <ro <1,

1 1
or T =t~ 6(t) = 8o — In(|Inre| +1) +h(!1§rol)
Hence, for 0 < rp < 1, r(2) and () are strictly decreasing and lim;_,q0 () = 0, limi_y00 #(t) = —00. Thus,
the trajectory spirals clockwise toward the origin.
(¢) f(z) is continuously differentiable, but not analytic, in the neighborhood of z = 0. See the discussion
on page 54 of the text.

b=

¢ 2.6 (a) The eguilibrium points are the real roots of
0=-—z, +az3 =bryza+ 23, 0= —(a+d)z + bz} - 2129
From the second equation we have
zy[—(a+d)+ b2y — 23] =0 = zy =0orz3 =—(a+b)+bx,
Substitution of z; = 0 in the first equation yields
Zo(za+a)=0 = T =00rzy = —a

Thus, there are equilibrium points at (0,0) and (0,—a). Substitution of z; = —(a + b) + bz; in the first
equation yields
_ _ - _ba+d) _ ~(a+5)
0=bla+b)~(1+)x; =0 = 2, = P A e e e

Hence, there is an equilibrium point at (4{-‘3)-, 21(_';#1)
(b)

[ -1 —bzs a—bn:1+223]

=

=(a +b) + 2bx) - 23 -1

1. z=(0,0)
A= [ —@+h) g]

~1%+ /T~ da(a+b)

2
The equilibrium point {0, 0) is a stable focus if 4a(a + b} > 1, a stable node if 0 < 4a(a + b) < 1, and
a saddle if a(a + b) < 0.

The eigenvalues of A are
A=

2. z=(0,-a)
~b 0

The eigenvalues of A are A = ab and A = ~1. The equilibrium point (0, ~a) is a saddle if 5> 0 and a
stable node if b < 0.

A=[—1+ub —a]

A

1 [—1+ab ~B—-a-2b
T1+0 [ {a+d)b -bla+b)




The eigenvalues of A are

-1%

A=

T~ db(a + b)

2

The equilibrium point (2{-‘_’55',‘2 :&f,@l) is a stable focus if 4b(a+5) > 1, a stable node if 0 < 4b(a+b) <

1, and a saddle if b(a +b) < 0.

The various cases are summarized in the following table.

(0,0) ©-a) | (432, &)

b>0,4a(a+b) > 1, 4b{a+b) > 1 | stable focus saddle stable focus

b >0, 4a{a +b) > 1, 4b(a + B) < 1 [ stable focus saddle stable node

b>0,4a(a+b) <1, 4b(a+b) > 1 | stable node saddle stable focus

it 5>0, 4a(a +d) <1, 4b{a + b) < 1 | stable node saddle stable node
i 58<0,a+b>0,4a(a+b)>1 | stable focus | stable node saddle
[ 6<0,a+5>0,4a{a+5) <1 | stable node { stable node saddle

b<0,a+b<0,4b(a+b)>1 saddle stable node stable focus

b<0,a+6<0,4ala+d) <1 saddle | stable node | _ stable node

If any one of the above conditions holds with equality rather than inequality, we end up with multiple
eigenvalues or eigenvalues with zero real parts, in which case linearization fails to determine the type ofthe

equilibrium point of the nonlinear system.

(c) The phase portraits of the three cases are shown in Figures 2.8 through 2.10.
i a = b= 1. The equilibrium points are

(0,0) stable focus
{0,-1) saddle
(1,-1) stable focus

Theﬁnear'maﬁonatthesaddleisAz[*g

eigenvector is

‘3]. Thestableeigenvectoris[i]andtheunstable

': ] They are used to generate the stable and unstable trajectories of the saddle.

The stable trajectories form a separatrix that divides the plane into two halves, with all trajectories
in the right half approaching (1, —1) and all trajectories in the left half approaching (0, 0).

ii a=1, b= —4}. The equilibrium points are

(0,0) stable focus
(0,-1) stable node
() saddle

The linearization at the saddle is A, where (1 + )4 =

0.9975
-0.0709

al

~(3/2) (1/8)
(1/8) (1/4

dtheumtableagmvectorm[gg;ggl They are used to generate the stable and

] The stable eigenvector

unstable trajectories of the saddle. The stable trajectories form a separatrix in the form of a lobe. All
trajectories outside the lobe approach (0, —1); all trajectories inside the lobe approach (0, 0).

iii ¢ = 1, b = —2. The equilibrium points are
(0,0) saddle
(0,-1) stable node
(3,3 stable focus

The linearization at the saddle is A = [ _i

3 ] The stable eigenvector is

~0.5257

0.8507 ] and the




unstable eigenvector is [ gg?,g; ] They are used to generate the stable and unstable trajectories of

the saddle. The stable trajectories form a separatrix in the form of a lobe. All trajectories outside the
lobe approach (0, —1); all trajectories inside the lobe approach (3, §)-
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Figure 2.8: Exercise 2.6(i). Figure 2.9: Exercise 2.6(if).
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Figure 2.10: Exercise 2.6(iii).

¢ 2.7 The system
I = za, &3 = —zy — Z3 (—1+3zf—zf+i%zg) :

has & unique equilibrium point at the origin. Linearization at the origin yields A = [ _‘1’ i ] whose
eigenvalues are 0.5 £ 0.866;. Hence the origin is unstable focus. The phase portrait is shown in Figure 2.11.
There are three limit cycles. The inner limit cycle is stable, the middle one is unstable, and the outer one is
stable. All trajectories starting inside the middle limit cycle, other than the origin, approach the inner limit
cycle as ¢ tends to infinity. All trajectories starting outside the middle limit cycle approach the outer limit
cycle as ¢ tends to infinity. Trajectories starting at the unstable focus or on the unstable limit cycle remain

there,
¢ 2.8 {a) The equilibrium points are the real roots of

0=z, O=-z:+%z}-2




Figure 2.11: Exercise 2.7.

Hence
z1(16 — 1‘:) =0 = 2y=0, £2

There are three equilibrium points at (0,0), (2,0), and (~2, 0).

O | —1+82 1
To 171 .
z=(0,0) > A= o 2= Z2EIVE
, | -1 -1 2

(0,0) is a stable focus.

0o 1
] - A=-1:b\/ﬁ

z=(2,0)or (-2,0) = A=

4 -1
(2,0) and (~2,0) are saddle points.
(b) The phase portrait can be sketched by constructing a vector field diagram and using the informa-
tion about the equilibrium points, especially the directions of the stable and unstable trajectories at the
saddle points. The stable and unstable eigenvectors of the linearization at the saddle points are

”m==[_,_l 7}=[-2;616]’ vuw.:[ﬂ;ﬂ]z[l.;wJ

Find the directions of the vector fields on the two axes. On z; = 0, f = [ 2; ] Hence the vector
: —&3
field makes an angle —45 deg with the z, axis and its magnitude increases with |z3]. Onz; = 0, f =




0
4 -
—$1+%

vector field at other poinis.
¢ 2.9 (a)

Hence the vector field is parallel to the z,-axis. The sketch can be improved by finding the

. 1
I = vq — T2, 2y = ;"1- [K,zl + K,(Ud —.’r.g) -K, sgn(::g) - Kfa':g - _K,,::ﬁ]

(b) At the equilibrium points, we have
O=vg—22, O=K,z +K,(vq—z3)— K, sgn(zz) — Kyzs — K,22
From the first equation, z» = v4, and from the second one, z; = (K. + Kyva + Kav3)/K,. This is the only
equilibrium point. Linearization at the equilibrium point yields
a=] 0 -1
T K,/m —(K;+2Ku4+ K,)/m
whose eigenvalues are

_ —(Kyr+2Kqva + K, )/m*/(K; +2Kova+ K, )*/m* — 4K, [m

- 2

If (K; +2Kqva+ K, )2 > 4mK,, the equilibrium is a stable node, and if (K +2K,v4 +K,)? < 4mK,, the
equilibrium is a stable focus.

A

(c) For the given numerical values, the eigenvalues of the linearization are —0.0289 and —0.3461. Hence, the
equilibrium point is a stable node. The phase portrait is shown in Figure 2.12. All trajectories approach the
stable node along the slow eigenvector of the node, which has a small slope. Starting from different initial
speeds, the trajectory reaches the desired speed with no (or very little) overshoot.

(d) The eigenvalues of the linearization are —0.1875 = 0.25465; hence the equilibrium point is a stable focus.
The phase portrait is shown in Figure 2.13. All trajectories approach the stable focus. Notice the increased
overshoot compared with the previcus case. For example, starting at the initial state (z; = 15, z3 = 10),
the speed reaches about 36 m/sec before approaching the steady-state of 30 m/sec.

(e) The phase portrait is shown in Figure 2.14. The local behavior near the equilibrium point is not
affected since saturation will not be effective. However, far from the equilibrium point we can see that the
state of the integraior, 71, takes large values during saturation, resulting in an increased overshoot.

¢ 2.10 (a) Using the same scaling as in Example 2.1, the state equation is given by
X = 0.5[—’!(31) + :L‘:], iq = 0.2(—31 - 0.2x9 + 02)

where h(z,) is given in Example 2.1. The equilibrium points are the intersection points of the curves
z2 = h(2;) and z3 =1 - 5z;. Figure 2.15 shows that there is a unique equilibrium point. Using the “roots”
command of MATLAB, the equilibrium point was determined to be £ = (0.057,0.7151).

oo 3]

af _| —~10461 05 . _
s - = [ —02 -0.04 ] = FEigenvalues = —~0.9343, _'0'1518 = stable node

(b) The phase portrait is shown in Figure 2.16. All trajectories approach the stable node. This circuit is
known as “monostable” because it has one steady-state operating point.
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Figure 2.12: Exercise 2.9(c). Figure 2.13: Exercise 2.9(d).
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Figure 2.14: Exercise 2.9(e}.

e 2.11 {a) Using the same scaling as in Example 2.1, the state equation is given by
&H = 0.5[—}1(31) + '-":l], g = 0.2(—:71 -02zy+04).

where h(z;) is given in Example 2.1. The equilibrium points are the intersection points of the curves
zg = h(2,) and z3 = 2 — 52;. Figure 2.17 shows that there is a unique equilibrium point. Using the “roots”
command of MATLAB, the equilibrium point was determined to be z = (0.2582,0.7091).

g _ 118173 05
87|, | ~0.2 -0.04

(b) The phase portrait is shown in Figure 2.18. The circuit has a stable limit cycle. All trajectories, except
the constant solution at the equilibrium point, approach the limi¢ cycle. This circuit is known as “astable.”

] = Eigenvalues = 1.7618,0.0155 = unstable node

L] 1 1
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Figure 2.15; Exercise 2.10: equilibrium point. Figure 2.16: Exercise 2.10: phase portrait.
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Figure 2.17: Exercise 2.11; equilibrium point. Figure 2.18: Exercise 2.11: phase portrait.

e 212 (a) Notethat T13 =T =1 = R‘l—’=fﬁ=landTu=ng=0 = 111—:=31;=0. Hence the

state equation is given by

4y = bz — )] ¥ A1), 2= h(za)le ~ @) ¥ fala)

where h(z) = Acos?(xz/2) and 1{z) = g~} (z) = (2/x)) tan(xz/2). Equilibrium points are the intersection
points of the curves z2 = 2n(z;) and z; = 217(33) Note that #'(0) = 1/A and 5'(z) = (1/A) sec®*(wz/2) > 1/A.
Therefore, for A < 2, the two curves intersect only at the origin (0,0). For A > 2, there are three intersection
points at (0,0), (a,a) and (~a,—a) where 0 < a < 1 depends on A. This fact can be seen be sketching the

curves and using symmetry; see Figure 2.19. ?[‘he partial derivatives of f; and f; are given by
B = (ea)laa — ()] - 2h(ex) o), B2 = hia)

g‘:*""’)’ gf = H'(za)[e1 = n(ea)] - 2h(aa)n’(22)

At eﬁuilibrium points, [zz — 2n(z,)] = 0 and [z; — 2n({z3}] = 0. Therefore, the Jacobian matrix reduces to
z=(b,b)

8z
where b = 0, o, or —a, depending on the equilibrium point.

oL 3 =

-2':’(5) ]

] = Eigenvalues = -2+ A

2=x(0,0)

For A < 2, the unique equilibrium point at (0,0) is a stable node. For A > 2, the equilibrium point (0,0) is
a saddle. For A > 2 there are two other equilibrium points at (a,a) and (—a,—a).

8f

o = h(a) [ ”2'{.(“) _2;,(0) ] = Eigenvalues = h(a)[-29(a) £ 1)

z=(a,0)

It is not hard to see from the sketch of the curves zo = 2n(z;) and z; = 2n(z2) that at the intersection
point (a, a), the slope 25'(a) > 1. Hence, (a,a) is a stable node. Similarly, it can be shown that (~a, —a) is
a stable node.

(b) The phase portrait is shown in Figure 2.20. The stable trajectories of the saddle point at the ori-
gin form a separatrix that divides the plane into two regions. Trajectories in each region approach the stable
node in that region.
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Figure 2.19: Exercise 2,12: equilibrium point. Figure 2.20: Exercise 2.12: phase portrait.

e 2,13 (a) Using Kirchhoff’s Voltage law, we obtain

b = a‘%:[vz ~ vy = g(wn)]

Using Kirchhoff’s Current law, we obtain

&g = N {—% - RIT{"’ -0 -y(vz)]}

Thué, the state equation is

, 1
& = aR—l[-zl + 23 — g(z2))

11_13_1_4_1(2)
Caly ! CsRz 2 C;'2R1."2 Cszg 2

(b) For the given data, the state equation is given by

.'i'z:

1= =31+ 33 - g(12), &2 =21~ 223 + g(z2)
4 9(z2) = 3.234z, — 2.19523 + 0.666z]
The system has a unique equilibrium point at the origin. The Jacobian at the origin is given by
8f _ [ -1 -2.234
Oz 21=0:zg=D 1 1.234

Hence the origin is an unstable focus. The phase portrait is shown in Figures 2.21 and 2.22 using two different
scales. The system has two limit cycles. The inner limit cycle is stable, while the outer one is unstable. All
trajectories starting inside the outer limit cycle, except the origin, approach the inner one. All trajectories
starting outside the outer limit cycle diverge to infinity.

] = Eigenvalues = 0.117 £ 0.9935

» 2.14 The system is given by

.’ifl = T3
I3 = —kz; —cx3 —n(1;,22)
where .
prmg sign(zz), for |zz| > 0
n{z1,22) = { —kzy, for 2, = 0&|x,| < uymg/k
—p,mg sign(z; ), for z; = 0&|z| > p,mg/k

’
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Figure 2.21: Exercise 2.13. Figure 2.22: Exercise 2.13.

For z» > 0, the state equation is given by

i‘l = I3

Eo —kx1 — czg — ppmig

while, for 12 < 0, it is given by

Iy = z2
2 = —~kzi = T2+ ppmg

In each half, we can determine the trajectories by studying the respective linear equation. Let us start with
z; > 0. The linear state equation has an equilibrium point at (—uxmg/k,0). Shifting the equilibrium to
the origin, we obtain a linear state equation with the matrix [ _Ok _lc , whose characteristic equation is
A% 4+ ch+ k = 0, where k and ¢ are positive constants. The equilibrium point is a stable focus when 4k > ¢?
and a stable node when 4k < ¢2. We shall continue our discussion assuming 4k > ¢*. Trajectories would tend
to spiral toward the equilibrium point {(~pxmg/k,0). It will not actually spiral toward the point because
the equation is valid only for zz > 0. Thus, for any point in the upper half, we can solve the linear equation
to find the trajectory that should spiral toward the equilibrium point, but follow the trajectory only until it
hits the z;-axis. For z» < 0, we have a similar situation except that trajectories tend to spiral toward the
point (#xmg/k,0). On the z,-axis itself, we should distinguish between two regions. If a trajectory hits the
z,-axis within the interval [—u,mg/k, u;mg/k], it will rest at equilibrium. If it hits outside this interval,
it will have #7 # 0 and will continue motion. Notice that trajectories reaching the zy-axis in the interval
z, > pymg/k will be coming from the upper half of the plane and will continue their motion into the lower
half. By symmetry, trajectories reaching the z,-axis in the interval z; < —pu,mg/k will be coming from the
lower half of the plane and will continue their motion into the upper half. Thus, a trajectory starting far
from the origin, will spiral toward the origin, until it hits the z;-axis within the interval [-u,mg/k, u,mg/k].
The phase portrait is sketched in Figure 2.23.

¢ 2,15 The solution of the state equation

1 = Tz, x1(0)=2xw0
& =k  22(0) =22
where k = %1, is given by
22(t) = kt+ 2z
zi(t) = 3kt 4zt +z10
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Figure 2.23: Exercise 2.14.

Eliminating ¢ between the two equations, we obtain

x = —}-—z’ +c
1T ok

where ¢ = z19 — z5)/(2k). This is the equation of the trajectories in the z;-z, plane. Different trajectories
correspond to different values of ¢. Figures 2.24 and 2.25 show the phase portraits for u = 1 and u = -1,
respectively. The two portraits are superimposed in Figure 2.26. From Figure 2.26 we see that trajectories
can reach the origin through only two curves, which are highlighted. The curve in the lower half corresponds
to u = 1 and the curve in the upper half corresponds to u = —1. We will refer to these curves as the
switching curves. To move any point in the plane to the origin, we can switch between *1. For example,
to move the point A to the origin, we apply u = ~1 until the trajectory hits the switching curve, then we
switch to u = 1. Similarly, to move the point B to the origin, we apply u = 1 until the trajectory hits the
switching curve, then we switch to u = —1. When the trajectory reaches the origin we can keep it there by
switching to u« = 0 which makes the origin an equilibrium point.
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Figure 2.24: Exercise 2.15. Figure 2.25: Exercise 2.15.

¢ 2.16 (a) The equilibrium points are the roots of
O0=x1(1 —z; —azz}, 0=bay(r; - x2)

From the first equation, we have z; = 0 or z; = 1—axz,. Substitution of z; = 0 in the secord equation results
in z2 = 0. Substitution of z; = 1 ~ azz in the second equation results in z3(1 — ax2 — z2) = 0 which yields




Figure 2.26: Exercise 2.15.

a2 = 0 or 23 = 1/(1 +a). Thus, there are three equilibrium points at (0,0), (1,0), and (1/(1+a), 1/{1+a)).
The Jacobian matrix is given by

ﬂ - - 21'1 — axg —axy
8z bx, bz — 2bz,

of _[10 of _[‘1 -“] of __1 [-1 —a]
8'::(0’0)— 00 ’33(1.0)_ Ob ,33(1.'_1:,1.#)—11-0. b =

At the equilibrium peint {0,0) the matrix has a zero eigenvalue; hence linearization fails to determine the
type of the equilibrium point. At (1,0), the equilibrium point is a saddle. At (1—_}3, 1—}_-0-), the eigenvalues
are

g =T+ VI 2+ P —dab
12 = 2(1 +a)

Hence, (1—1;1—1;) is a stable node if 1 — 25 + §? — 4ab > 0 and a stable focus if 1 ~ 2b+ b3 — 4ab < 0.

The phase portrait is shown in Figure 2.27. The equilibrium point (3+4) is a stable focus that attracts all
trajectories in the first quadrant except trajectories on the z,-axis or the z; axis. Trajectories on the z;-axis
move on it approaching the saddle point at (1,0). Motion on the ,-axis corresponds to the case when there
are no predators, in which case the prey population settles at z; = 1. Motion on the z; axis corresponds
to the case when there are no preys, in which the case the predator population settles at z; = 0; i.e., the
predators vanish. In the presence of both preys and predators, their populations reach a balance at the

equilibrium point (3,1).
* 2.17 (1) Assume ¢ >0 and let 2; =y, 7o = 3, and V(z) = 22 + z3.
Ty =23, Z2=-2)+exp(l -2 -zd)

f@) VV(z) = 2e23(1 - 2} - 23) = 2e23(2 - V)
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Figure 2.27: Exercise 2.16.

Hence, f(z)- VV(z) <0 for V(z) > 1. In particular, all trajectories starting in M = {V{(z) < 1} stay in M
for all future time. M contains only one equilibrium point at the origin. Linearization at the origin yields

the matrix _?1 ; . Hence, the origin is unstable node or unstable focus. By the Poincaré-Bendixson

criterion, there is a periodic orbit in M.

(2) Let V(z) = 2% + =3.

F(z) - VV(z) = 223(2 — 32] — 223) = 4z3(1 — 7} — z3) — 2z{x3 < 4z3(1 — 2} —23)
Hence, f(z) - VV(z) < 0 for #} + 22 > 1. In particular, all trajectories starting in M = {V(z) < 1} stay
in M for all future time. M contains only one equilibrium point at the origin. Linearization at the origin
yields the matrix _01 ';‘ , Whose eigenvilues are 1 and 1. Since f(z) is an analytic function of r, we

conclude that the origin is unstable node. By the Poincaré-Bendixson criterion, there is a periodic orbit in M.

(3) Let V(z) = 327 + 22179 + 223.
f(z) - VV(z) = (6zy +2z3)z2 + (271 + 4x2}|—21 + 22 - 2(T1 + 2::2)3%]
—2.’;.“? +4z12q + 61'% - 4{zy + 232)213
—2(x? + 22} + dx3 (31 + 222) ~ 4(z) + 222)%z3
= =2(z} +13)+1-[1 - 2z2(z1 + 222)]°
< “2zi+23)+1<0, foraf+ai>1l
Choose a constant ¢ > 0 such that the surface V(z) = c contains the circle {z} + 22 = 1} in its interior.

Then, all trajectories starting in M = {V(z) < ¢} stay in M for all future time. M contains only one

equilibrium point at the origin. Linearization at the origin yields the matrix [ _01 % }, whose eigenvalues

are (1 j1/3)/2. Hence, the origin is unstable focus. By the Poincaré-Bendixson criterion, there is a periodic
orbit in M.
(4) The equilibrium points are the roots of
0 = 21 + 22 — z; max{|z1], |za]}, 0 = =2x; + 73 — zo max{|z;|, |z2]}
From the first equation, we have zy = z;(max{|z,], |z2]} — 1). Substitution in the second equation results in

0 = -2z, — 71 (max{|z1], |x2|} — 1) = ~21[2 + (max{|zy|,|z2|} - 1)}] = ©1 =0 =222 =0




Hence there is a unique equilibrium point at the origin. Linearization at the origin yields the matrix

A= [ _12 i whose eigenvalues are 1+ 1.4142. Hence, the origin is an unstable focus. Now consider

Viz) = = + z3.
VWi = 2521+ 22 ~ 21 max{|z1], }22|}) + 2z2(~22; + 23 — 22 max{fzy], |22[})
= 2z} — 2232, + 223 - 2(z? + 23) max{|z,|, |z2|}

, 1 -05
2(s7Pz = el max(lesl eal)], where P=| o 0% ]

The matrix P is positive definite with maximum eigenvalue 1.5. Therefore,
VV - f < 2[1.5]|z1)3 ~ {l<l|3 max{|z1], |z2[}] < 0, for max{|z[, 2]} > 1.5

Thus, by choosing ¢ large enough, VV - f will be negative on the surface {V(z) = ¢}. Hence, all trajectories
starting in the set M = {V(z) < ¢} stay in M for all future time and M contains a single equilibrium point
which is unstable focus. It follows from the Poincaré-Bendixson’s criterion that there is a periodic orbit in
M.

e 2.18

(a) .
V =383 + g(z1)81 = —229(21) + 229(21) = 0

(b) For small ¢ > 0, the equation V(z) = ¢ defines a closed curve that encloses the origin. Since V = 0, a
trajectory starting on the curve must remain on the curve for all t. Moreover, from #; = Z3, we see that the
trajectory can only move in the clockwise direction. Hence, a trajectory starting at any point on the closed
curve V(z) = c must move around the curve until it comes back to the starting point. Thus, the trajectory

is a periodic orbit.
(c) Extension of (b) because V(z) = ¢ is a closed curve for all ¢ > 0.
(d) V(z) = {23 + G(z1) = constant. At z = (4,0), V = G(A). Thus
$(t) + Glz1 (1) = G(4) = 22(t) = £V2G(A) - G )]
(e) Starting from %) = Z2, we have

dz,
V2G(4) - G(21)]
for zz > 0. Calculating the line integral of the right-hand side in the upper half of the plane from (—A4,0)
to (A, 0), we obtain _

=>T=2\/§/0A

z - /“4 dy dy
2" Joa VAC(A = Gly)) VG(A) - G(y)

where we have used the fact that G(z,) is an even function.

(f} We can generate the trajectories using the equation in part (d). For each value of A, we sclve the
equation to find z; as a function of z;. The function G(z;) has a minimum, a maximum, or a point of
inflection at each equilibrium point of the system. In particular, It has a minimum at z; = 0 corresponding
to the equilibrium peint at the origin. Starting from small values of A, the equation will have a solution
defining a closed orbit. As we increase the value of A, the equation will continue to define a closed orbit until
A reaches the level of 2 maximum point of G(z;). For values of A higher than the maximum, the curves
will not be closed. Depending on the shape of G(z,), the equation may have multiple solutions defining
trajectories in different parts of the plane. The conditions of part(c) ensure that G(z,) will have a global

minimum at z; = 0.




e 2.19 The phase portraits can be generated by solving the equation of the previous exercise either graph-
ically or using a computer. We will only give the function G(z;) and calculate the period of the trajectory

through (1,0).
(1) .
G(y) = f sinz dz=1-cosy
0

1
T =22 _ 4y
o +/COSY — CO8

(2) ]
G(y) = / (Z <+ Zs) d:z = %yz + %y‘
[+]

G(y) =+ oo as |y] — oo and zg(z) > 0 for all z. Hence, every solution is periodic.

T= 2\/'f ‘/.__yz-_;ﬁ

G(u)=/wz3dz=£ 4
(]

G(y) — o0 as |y| =+ co and zg¢(z) > 0 for all 2. Hence, every solution is periodic.

- 1 d
T=21/§/0 \/ﬁ

3

* 2.20

@ of  Of
1 2
.8'_z;+8_n_-l+a#0

By Bendixson's criterion, there are no periodic orbits.
(2) The equilibrium points are the roots of
O=z1(-1+2¥ +23), O=z3(~1+23+23)

The system has an isolated eguilibrium point at the origin and a continuum of equilibrivmn points on the
unit circle 22 + 22 = 1. It can be checked that the origin is a stable node. Transform the system into the
polar coordinates x; = rcosf, z; = rsinf. It can be verified that

f=—r(l-r?)

For r < 1, every trajectory starting inside the unit circle approaches the origin as t =+ 0. For r > 1, every
trajectory starting outside the unit circle escapes to co as t —+ co. Thus, there are no limit cycles.

(8) The equilibrium points of the system are the roots of
0=1-z23, O=zm

These equations have no real roots. Thus, there are no equilibrium points. Since, by Corollary 2.1, a closed
orbit must enclose an equilibrium point, we conclude that there are no closed orbits.




(4) The z;-axis is an equilibrium set. Therefore, a periodic orbit camnot cross the z;-axis; it must lie
entirely in the upper or lower halves of the plane. However, there are no equilibrium points other than the
Tp~-axis. Since, by Corollary 2.1, a periodic orbit must enclose an equilibrium pomt we conclude that there

are no periodic orbits.
(5) The equilibrium points are the roots of
0=zacosx;, 0=sinz,
The equilibrivm point are (+nx,0) for n = 0,1,2,--.. Linearization at the equilibrium points yields the
matrix 2 8 where ¢ = +1. Hence, all equilibrium points are saddles. Since, by Corollary 2.1, a

periodic orbit must enclose equilibrium points such that N — § = 1, we conclude that there are no periodic
orbits.

* 221
(a) Let
i +0b
Viz) =2z —
(:I:) 72 T +a
The function V(z) is negative in D and the curve V(z) = 0 is the boundary of the set D.
(,—a)

f(z)-VV(z) = —cz1(z1 + @) + [—z1 + z2(z1 + a) — }]

(z1 +a)?
Evaluating f(x) - VV(z) on the curve V(z) = 0 yields
HEE VV(2)ly(z)=0 = —cFa (%1 +a) <0, Y2 €ID

Hence, trajectories on the boundary of D must move into D, which shows that trajectories starting in D
cannot leave it.

(b} oh . of
1,92 _ _
az! a_'.':g_ 14220, YzeD
By Bendixson's criterion, there can be no closed orbits entirely in D. Since trajectories starting in D cannot
leave it, a closed orbit through any point in D must lie entirely in D. Thus, we conclude that there are no

closed orbits through any point in D.
¢ 2.22 (a) The value of £; on the z,-axis is Z; = dz7 > 0. Thus, trajectories starting in 1D cannot leave it.

(b)

af . 8
a;fl Eii_.a-;pg-—cg—(c—a)<0, VzeD

By Bendixson’s criterion, there can be no closed orbits entirely in D. Since trajectories starting in D cannot
leave it, a closed orbit through any point in D' must lie entirely in D. Thus, we conclude that there are no
closed orbits through any point in D.

¢ 2,23
_5_ o _ —2a or |z1| > 1
= + 22 o a[2b - g(z1)] = { —a{2b - k) for |z:| < 1
.'c<2b==>g‘f1 gfz<0 Vz
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Figure 2.29: Exercise 2.27(2).

Hence, the origin is a stable focus for u < 0 and unstable focus for 4 > 0. The phase portrait for different
values of u is shown in Figure 2.29. For y < 0, there is a stable focus at the origin and unstable limit cycle
around the origin. The size of the limit cycle shrinks as 4 tends to zero. For p > 0, the origin is an unstable
focus and the limit cycle disappears. Hence, there is a subcritical Hopf bifurcation at p = 0.

(3) The equilibrium points are the real roots of

0=z,, 0=u——z3—z'f—2::1::2

Ta=0 = zf:y

When u < 0, there are no equilibrium points. When g > 0, there are two equilibrium points at (,/4,0) and

(—\/El 0)

of 0 1 _
— = A = _1, _2 ,
3z, /o) [ ~2/B ~(1+2/B) } = ALz Vi = (V5,0) is a stable node
8f 0 1 ‘
— = A = __1’ ,
3z | _ o) [ 2/E —(1-2ym) ] = A2 2V = (y/B,0)is a saddle

There is a saddle-node bifurcation at u = 0.

(4) The equilibrium points are the real roots of
0=z, 0=—(1+p%)21+ 222+ pzi —zi27,




* 2.24 Suppose M does not contain an equilibrium point. Then, by the Poincaré-Bendixson criterion, there
is a periodic orbit in M. But, by Corollary 2.1, the periodic orbit must contain an equilibriam point: A
contradiction. Thus, M contains an equilibrium point.

e 2.28 Verifying Lemma 2.3 by examining the vector fields is simple, but requires drawing several sketches.
Hence, it is skipped.

e 2.26
(1) Linearization at the origin yields [ 3 _01 } Hence, the origin is not hyperbolic. The index of the

origin is zero. This can be easily seen by noting that fy = 7 is always nonnegative. Clearly, the vector field
cannot make a full rotation as we encircle the origin because this will require f; to be negative.
(2) Linearization at the origin yields [ g g } Hence, the origin is not hyperbolic. The index of the origin

is two. This can be seen by sketching the vector field along a closed curve around the origin.
¢ 2.27 (1) The equilibrium points are the real roots of
0=z, O=ple,+z;)— 13 ~2} - 323z,
22=0 = O0=x(u-2}) = z,=00r 22=4
For p > 0, there are three equilibrium points at (0,0), (,/E,0), and (=1, 0).

of _ 0 1
8z | p—3r; -6z p-1-3z3

8f [ 0 1 ] _
B = = Ao=-1, = (0,0 dl
oz ©.0) b u=1 1,2 B (0,0) is a saddle
% - [ 'g“ -1 i 2p ] = Ma=-2, -1 = (/n0)is a stable node
{vi0)
Similarly, (~/0) is a stable node. For 4 <0, there is a unique equilibrium point at (0,0).

af 0 1 .

5z = = Aa2=-1, 0, 1

8z | g0 [ b p-1 ] 1.2 # = (0,0) is a stable node

Thus, there is supercritical pitchfork bifurcation at u = 0.

(2) The equilibrium points are the real roots of
0=} +22, O=—(1+p")a +2uzs — 2} +2(xp — pz1)®

=2 > 0=z {-1+ (2} - p)[u+ 223} - w)?}

For all values of 4, there is an equilibrium point at (0,0). At u = 0, there are two other equilibrium points
at (a,a*) and (—a, —a®), where a® = 0.5. It can be checked that these two equilibrium points are saddies.
By continuous dependence of the roots of a polynomial equation on its parameters, we see that there is a
range of values of 4 around zerc for which these two saddie points will persist. We will limit our attention
to such values of u and study local bifurcation at 4 = 0.

8f 0 |

dz = A =ut1q
3 10,09 [—(1+#2) 2p] = Mz=pEj
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Figure 2.29: Exercise 2.27(2).

Hence, the origin is a stable focus for u < 0 and unstable focus for 4 > 0. The phase portrait for different
values of u is shown in Figure 2.29. For y < 0, there is a stable focus at the origin and unstable limit cycle
around the origin. The size of the limit cycle shrinks as 4 tends to zero. For p > 0, the origin is an unstable
focus and the limit cycle disappears. Hence, there is a subcritical Hopf bifurcation at p = 0.

(3) The equilibrium points are the real roots of

0=z,, 0=u——z3—z'f—2::1::2

Ta=0 = zf:y

When u < 0, there are no equilibrium points. When g > 0, there are two equilibrium points at (,/4,0) and

(—\/El 0)

of 0 1 _
— = A = _1, _2 ,
3z, /o) [ ~2/B ~(1+2/B) } = ALz Vi = (V5,0) is a stable node
8f 0 1 ‘
— = A = __1’ ,
3z | _ o) [ 2/E —(1-2ym) ] = A2 2V = (y/B,0)is a saddle

There is a saddle-node bifurcation at u = 0.

(4) The equilibrium points are the real roots of
0=z, 0=—(1+p%)21+ 222+ pzi —zi27,




o=0 = 0=-(1+,u2):c1 +,u17?
For all values of u, there is an equilibrium point at (0,0). For u > 0 there are two other equilibrium points

at (a,0) and (—a,0), where a = /(1 + u?)/u.
af

9z

0 1

= = /\ =utj
©0) [_(14_“2) 2#] 1,2 =Hx}]

Hence, the origin is a stable focus for 4 < 0 and unstable focus for 4 > 0.

2(1 _?_ u2) (-1 +1“2)/# ] =2 A= % [— (1 —upz) :k\/(-l—-_-‘-‘-ﬁi)2+8(1+p2)j

Hence, (a,0) and (—a,0)} are saddle points. The phase portrait for different values of u is shown in Fig-
ure 2.30. For u < 0, there is a stable focus at the origin. For u > 0, the origin is an unstable focus and
there is a stable limit cycle around the origin. The size of the limit cycle shrinks as 4 tends to zero. Hence,
there is a supercritical Hopf bifurcation at u = 0. Also, as x4 becomes positive, the saddle points appear on
the zy-axis at z; = :t\/(lThW. The saddle points start at infinity and they move toward the origin as
4 increases, until they reach +2 at 4 = 1. Then they move again toward infinity. For g = 0.2, the phase
portrait is shown in a larger area that includes the saddle points.

/4
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Figure 2.30: Exercise 2.27(4}.

{5) The equilibrium points are the real roots of

0==z9, O=p{ry+x2)— 132 ——::§+3.1:fa:2




22=0 = 0=z (u—-z?)

For all values of u, there is an equilibrium point at {(0,0). For p > 0 there are two other equilibrium points

at (,/B,0) and (- /&, 0).
of
8z

_ [ 0 1
(0,0) B op-l

] = A2=-1p

Hence, the origin is a stable node for 4 < 0 and a saddle for 4 > 0.

0 1

of _ [
(£/A.0) =2p (4# - 1)

8z

] => A1|2 =

=(1=4p) /(1 ~4p)2 - 8u
2

The following table gives the type of the equilibrium points (,/#,0) and (—./4, 0) for various positive values

of u.

Range

Type

0 < 1 < 0.067

Stable node

0.067 < 4 < 0.25

Stable focus

0.25 < 4 < 0.933

Unstable focus

0.933 <

Unstable node

Thus, there is a supercritical pitchfork bifurcation at z = 0. We also examine g = 0.25, where the equi-
librium points (\/#,0) and {(—,/&,0) change from stable focus to unstable focus. The phase portraits for
4 = 0.24 and p = 0.26 are shown in Figure 2.31. As u crosses 0.25 new stable limit cycles are created around
the points (\/f,0) and (—./%,0). Thus, there is a supercritical Hopf bifurcation at 4 = 0.25.

p=024
1

u=028

1

-1
-4 05 0 05 1

Figure 2.31: Exercise 2.27(5).

(6) The equilibrium points are the real roots of

O0=z3, O0=pu(z+z3)—23—2° — 2212,

22=0 = O0=z(p-n)

There are two equilibrium points at {0,0) and (g, 0).

of
oz

z[o 1
{0,0) B Au—l

] = ’\1,2="'1! ]




Hence, the origin is a stable node for 4 < 0 and a saddle for p > 0.

o) [0
oz (u.0) —i _(.u + 1)

Hence, (u, 0) is a saddle for 4 < 0 and a stable node for i > 0. There is a transcritical bifurcation at z = 0.

] = N2=-1, -

¢ 2.28 (a) The equilibrium points are the real roots of
0=~ %zl + tanh(Az,) — tanh(Az;), 0= - %Ig + tanh(Az;) + tanh({Az3)

By adding and subtracting the two equations, we see that the equilibrium points are the intersections of the

two curves ,
T2 = —2Zy + 271 tanh(Azl), Ty =23~ 21 tﬂﬂh()ﬁﬂ.‘z)

Clearly there is an equilibrium point at the origin (0, 0). By plotting the two curves for different values of At
(see Figure 2.32), it can be seen that the origir is the only intersection point. In fact, the two curves touch
each other asymptotically as A7 = co. Thus, we conclude that the origin is the only equilibrium point. Next
we use linearization to determine the type of the equilibrium point.

of [— %+Am —'\cosh A3 J
e B R P

o [-L4a - _

8_] = ’ : R Eigenvalues:-(j\f—l—):i:j.\

oz|, A ~ 14 T

Hence, the origin is a stable focus for A7 < 1 and unstable focus for Ar > 1. To apply the Poincare-Bendixson
criterion when At > 1, we need to find a set M that satisfies the conditions of the criterion. We do it by

transforming the equation into the polar coordinates
= ,/«3 22 f=tan-1{%2
r y +z3, tan (31)

;== ;l-r + cos(f)[tanh(Ar cos(6)) — tanh(Ar sin(6))] + sin(8)[tanh(Ar cos(§)) + tanh(Ar sin(6))]
Using |tanh(-)| < 1, |cos(-)| < 1, and |sin(-)] < 1, we see that

fﬁ—lr+4
T

Choosing r = ¢ > 47, we conclude that on the circle r = ¢, # < 0. Hence, vector fields on r = ¢ point to the
inside of the circle. Thus, the set M = {r < c} has the property that every trajectory starting in M stays
in M for all future time. Moreover, M is closed, bounded, and contains only one equilibrium point which is
unstable focus. By the Poincare-Bendixson criterion, we conclude that there is a periodic orbit in M.

(b) The phase portrait is shown in Figure 2.33. The origin is an unstable focus and there is a stable
limit cycle around it. All trajectories, except the trivial solution z = 0, approach the limit cycle asymptoti-

cally.

(c) The phase portrait is shown in Figure 2.33. The origin is a stable focus. Al trajectories approach
the origin asymptotically.

(d) For A7 < 1, there a stable focus at the origin. For Ar > 1, there is an unstable focus at the origin
and a stable limit cycle around the origin, Hence, there is a supercritical Hopf bifurcation at Ar = 1.




Figure 2.32: Exercise 2.28.
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Figure 2.33: Exercise 2.28.

e 2.29 (a) The equilibrium points are the real roots of

=g — gy — Z1%2 = - I

From the second equation we have z) = 0 or zz = 1 +z3. The first equation cannot be satisfied with z; = 0.
. Substitution of 2 = 1+ 27 in the first equation results in 2, = ¢/5. Thus, there is a unique equilibrium
point at ((a/5),1+ (¢/5)?). The Jacobian matrix is given by _

4z sziz 4z
af -1- et 1+=,’ T I+

az 2&3
b(1- oig)+ el - &

af _ 1 [ -5+ 3(a/5)* —4(a/5) - -—-——-1———B
02|y ariamyy 1+ @572 | 20af5)  —b(a/5} | T 1+ (af5P




The characteristic equation of B is
s2+ Bs+ =0

where
B =5-3(a/5)°+b(a/5), ~=5[1+ (a/5)%b(a/5)

We have v > 0. If 8 < 0, the eigenvalues will be real and positive or complex with positive real parts; hence
the equilibrium point will be unstable node or unstable focus. § is negative if b < 3(a/5) — 25/a. To apply
the Poincare-Bendixson criterion, we need to choose the set M. Figure 2.34 sketches the two curves whose
intersection determines the equilibriumn point. On the sketch we identify a rectangle with vertices at A, B,
¢ and D. On the line AB, #; > 0; hence the vector fields point upward. On the line BC, £; < 0; hence the
vector fields point to the left. On the line CD, i3 < 0; hence the vector fields point downward. On the line
DA, £, > 0; hence the vector fields point to the right. Thus, taking the set M to be the rectangle ABCD, we
see that every trajectory starting in M stays in M for all future time. Moreover, M is closed, bounded, and
contains only one equilibrium point which is unstable node or unsta.ble focus. By the Poincare-Bendixson
criterion, we conclude that there is a periodic orbit in M.

o-n-x1-4x1:21(1+:§)
p=1ed

-z

A2 PN

Figure 2.34: Exercise 2.29.

{(b) For a = 10 and b = 2, we have } < 3a/5 — 25/e. The equilibrium point is (2,5) and it is unstable
focus. The phase portrait is shown in Figure 2.35. The system has a stable limit cycle. All trajectories,
except the equilibrium solution z = (2, 5), approach the limit cycle asymptotically

(c) For a = 10 and b = 4, we have b > 3a/5 — 25/a. The equilibrium point is (2,5) and it is a stable
focus. The phase portrait is shown in Figure 2.35. All trajectories approach the equilibrium point asymp-

totically.

(d) For b < 3a/5 — 25/a, B is negative. Moreover, when b is close to 3a/5 — 25/a, 8 will be close to
zero. Hence, 4y > 52 and the equilibrium point is unstable focus. As we saw from the phase portrait, there
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Figure 2.35: Exercise 2.29.

is a stable limit cycle around the equilibrium point. For b > 3a/5 — 25/a, 8 is positive. Once again, when b
is close to 3a/5 — 25/a, B will be close to zero. Hence, 4y > £? and the equilibrium point is a stable focus.
There is a supercritical Hopf bifurcation at b = 3a/5 — 25/a.

e 2,30 (a) The equilibrium peints are the roots of

_(_mT__ s o) AmT1T2
°'((km+zz) ”')”" 0=dlzay - =) - 75— om)

The first equation has two solutions: z; = 0 or the solution of d = pmz2/(km + z2), which we denote by a.
When d < pim, there is a unique solution . Substitution of z; = 0 in the second equation yields z2 = z2y.
Substitution of 22 = a in the second equation yields z; = Y(zay — @), which will be a feasible solution if
o < Tzy; that is, d < pmZayg/{(km + 22¢). Thus, when d < pmias/(km + 22¢), there are two equilibrium
points at (G, zz7) and (Y (225 — a),a). When d > pmzay/(km + z25), there is a unique equilibrium point at

(0, z2g). _ X
! z
o [MEE-d s
3z = - :
| vy - vty
o | R o
Oz (B.z2¢) - -d

—ldm T3
Y i!m+=3ji

Hence, (0, z27) is a saddle if d < pm@2s/(km + z2¢) and a stable node if d > pmzas/(km + za5).

Embwm Y (22—
of 0 UE...+.uz,Sg_2
Oz (Y(z2s—a).a} - % " kmﬂv:‘!::ﬂ—a!

The eigenvalues are —d and —kmpum(Zay — a)/(km + a)?. For d < pmzay [(km + 22¢), (Y (227 — a),@) is 2
stable node. For the given numerical data, pmzay /(km + 227) = 0.4878. When d > py,, there is a unique
equilibrium point at (0, 225), which is a stable node.

(b) The bifurcation diagram is shown in Figure 2.36. As d increases toward 0.4878, the saddle at (0, z2y)
and the stable node at (Y (z27 — a),a) collide and bifurcate into a stable node at (0, zzy).
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Figure 2.36: Exercise 2.30: Bifurcation diagram. Figure 2.37: Exercise 2.30.

(c) For d = 0.4, @ = kmd/(gm —d) = 04. Since d = 0.4 < 0.4878, there is a saddle at (0,4) and a
stable node at (1.44,0.4). The phase portrait is shown in Figure 2.37.

*2.31 (a) Let
HmT2

o) = ——tm¥2
#(z2) km + 72 + k122

The equilibrium points are the roots of
Ozz;[p(zg)-dj, 0=d(:!:21 hzz)—%&z)

From the first equation, zy = 0 or p(z2)} =d.

1 =0 = z;=z9
uz2)=d = £, =Y(zy —.zg)

By sketching the function ys(z2), it can be seen that if d < max;,>o{u(z2)}, the equation d = u(z;) will have
two solutions. Let us denote them by a; and a;. In this case, there are three equilibrium poinis at (0, zay),
(Y (z2¢ ~ 1), ), and (Y (z2¢ — 2), @2), provided z5; — &y and z3; — @3 are nonnegative numbers. If one of
these numbers is negative, the corresponding equilibrium point is not feasible. If d > max,,>o{u(zz)}, the
equation d = p(zz) has no solutions. In this case, there is only one equilibrium point at {0, z2;). The plot of
4 as a function of z; is shown in Figure 2.38. By differentiation, it can be seen that x has a maximum value
(M‘/h?kl)/&km + \/k,,Jk; = 0.3455 at 23 = \/kp/k1 = 0.4472. When d > 0.3455, there is a unique
equilibrium point at (0,4), and when d < 0.3455 there are three equilibrium points at (0,4), (0.4(4~a;), o),
and (0.4(4 — a3), a3}, where a; < 0.4472 and az > 0.4472 are the solutions of d = u(x3). In the case of as,
the equilibrium point (0.4(4 — az2), a2} is not feasible if a; > 4. It can be checked that 4 = 0.1653 at z; = 4.
Hence, for d < 0.1653, there are only two equilibrium points at (0,4) and {0.4(4 — a1),a;). The Jacobian

matrix is given by
—~d 4 —im¥2_ fim T (o — k3 —d+ 0.5z 0.52, (0.1 —kz3
af Kmt2a+k123 km +23+k1 35 0.14+-z340.52% (0.1+22+0.573
oz Ay x -d— Fﬂ(ﬂﬁﬁi%, —0.5¢ —d — 9:52:(0,1—ks]
ke +T2+k1 T3 km+za2+k123 0.4(0.14-23-+0.523 0.4(0.1423+40.5x3

At z = (0, 4), the Jacobian matrix is

—-d+0.1653 0
* —-d




When d > 0.1653, the equilibrium point is a stable node. When d < 0.1653, it is a saddle. At z =
(0.4(4 — a1), a1 ), the Jacobian matrix is

[av -1l ]

where 8 = (27 — 01 )(km — k103)/pmed > 0. The eigenvalues of this matrix are —d and —d?8. Hence, the
equilibrium point is a stable node. At z = (0.4(4 — 02), a2) with a2 < 4, the Jacobian matrix is

0 &?2vY
_djY  —d—dy

where v = (227 — @2)(km — k102)/tima3 < 0. The eigenvalues of this matrix are —d and ~d?y. Hence, the
equilibrium point is a saddle. In summary, we have the following three cases:
& When 4 > 0.3455, there is one equilibrium point at (0, 4) which is a stable node.

e When 0.1653 < d < 0.3455, there are three equilibrium points: a stable node at (0,4}, a stable node
at (0.4(4 — a1), 1), and a saddle at (0.4(4 — a3), a3)-

e When d < 0.1653, there are two equilibrium points: a saddle at {0, 4) and a stable node at {0.4(4 —
al)a al)'

Stablenode .~

%5 0.1853 0.3455 d

Figure 2.38: Exercise 2.31. Figure 2.39: Exercise 2.31: Bifurcation diagram.

(b) The bifurcation diagram is shown in Figure 2.39. There is a saddle-node bifurcation at d = 0.3455. At
d = (.1653 there is a type of bifurcation that is not shown in Figure 2.28, A saddle point bifurcates into a
stable node and a new saddle is created.

(c) When d = 0.1, there are two equilibrium points: (0,4) is a saddle and (1.59,0.0251) is a stable node.
The phase portrait is shown in Figure 2.40. The stable trajectories of the saddle are on the zy-axis. All
trajectories in the first quadrant approach the stable node.

{d) When d = (.25, there are three equilibrium points: (0,4) is a stable node, (1.5578, 0.1056) is a stable
node, and (0.8426,1.8936) is a saddle. The phase portrait is shown in Figure 2.41. The stable trajectories
of the saddle form a separatrix which divides the first quadrant into two halves. All trajectories in the right
half approach the stable node (1.5578, 0.1056), while all trajectories in the left half approach the stable node

(0,4).




d=0.1 d=025

5 L3
4 4
3 3
xNZ "Nz
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o 0
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Figure 2.40: Exercise 2.31(c). Figure 2.41: Exercise 2.31(d).
d=05
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0
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Figure 2.42: Exercise 2.31(e).

(e) When d = 0.5, there is one equilibrium point at (0,4) which is a stable node. The phase portrait
is shown in Figure 2.42. All trajectories in the first quadrant approach the stable node.




Chapter 3

+

e 3.1 (1) The term |z| is not continuously differentiable at z = 0, but it is globally Lipschitz. The term
2? is continuously differentiable, but its partial derivative is not globally bounded. Thus f = z? + |z| is
not continuously differentiable at z = 0. It is continuously differentiable on a domain that does not include
2 = {. It is locally Lipschitz, hence continuous, but not globally Lipachitz.
(2) The term sgn(z) is discontinuous at z = 0. Thus, f(x) = z + sgn(z) does not have any of the four
properties in a domain that contains z = 0.
(3) f(z) = sin(z) sgn(z) is globally Lipschitz. This can be seen as follows. .If both z and y are nonnegative,
we have

[£(z) - £(y)] = |sin(z) - sin(y}] < |z -l
If z > 0 and y < 0, we have

|7 (=) — F()| = | sin(z)+ sin(y)| = |2sin(}(z + y)) cos(3(z — ¥))| < Jz —y|

Other cases can be dealt with similarly to conclude that |f(z) — f(y)| < |z — yl for all z,y. It follows
that f is both locally Lipschitz and continuous. It is not continuously differentiable at 2 = 0 because
limz 04 f'(z) = +1 while limz o~ f'(z) = -1.

(4) f(z) = —z + asinz is continuously differentiable. Hence, it is locally Lipschitz and continuous. 4 =
—1+acosz is globally bounded. Hence, it is glebally Lipschitz.

(5) f(z) = —z + 2|z] is not continuously differentiable. It is globally Lipschitz because both z and |z| are
so. Hence, it is locally Lipschitz.

(6) f(z) = tan(z) is continuously differentiable in the open interval -n/2 < z < 7/2. Hence, it is locally
Lipschitz and continuous in the same interval. Its derivative sec?(z) is not globally bounded; hence, it is not
globally Lipschitz.

(7) The function tanh(y) is continuously differentiable and its derivative 1/cosh’(y) is globally bounded;
hence it is globally Lipschitz. Clearly, the linear function y is both continuously differentiable and globally
Lipschitz. Hence, f has all four properties.

(8) f is not continuously differentiable due to the term |zz| in f,. Check the Lipschitz property component
by component. f) is globally Lipschitz as can be easily checked. f; is continuously differentiable, but its
partial derivatives are not globally bounded. Hence f: is locally Lipschitz but not globally so. Since both f,
and f are locally Lipschitz, so is f. Since f is locally Lipschitz, it is continuous. f is not globally Lipschitz
since f> is not so.

e 3.2 (1)
_ I g - 0 ) 1
flz)= [ ~ $sinzy — £x3+"—3‘qT]=>6z - [ - fcosz; - ;’f;]
[8f/8x] is globally bounded. Hence f is globally Lipschitz, which implies that it is locally Lipschitz on D,
for any r > 0.
(2)

— Ah(z)) + 42 8f — Lh'(z1) &
= ol 1 c4e —_— = C 1 ol
f(=) [—%m—fmiu]"ax [ 23 —%]




[8f /0z] is continuous everywhere; hence it is bounded on the bounded set D,. Thus f is locally Lipschitz
on D, for any finite r > 0. It is not globally Lipschitz since [#f/0z] is not globally bounded.

3
= Z2

f=) = [ - kg1~ Loy + L(z1,72) ]

7(z1,22) is discontinuous at z3 = 0. Hence it is not locally Lipschitz at the origin. This means it is not

locally Lipschitz on D, for any r > 0.

(4) 0
— T2 or _ 0

@) = [ ~z; — (1 —xd)z3 } 8z [ -1-2ez129 —£(1—12z)

[8f/0z] is continuous on D,; hence f is locally Lipschitz on D, for any r > 0. [8f/8z) is not globally
bounded; hence f is not globally Lipachitz.
(5) Letz = [em ¢l:¢]T- .
am®y + kpZar (t) + kpzs(z1 + ym(t)) af am +hpzs  kpr(t) k(w1 +ym(t))
flt,z) = —72.7(t) =7 (?) 0 0
—721(%1 + ym(t)) (251 +ym(t)) O 0

{0f/0z) is continuous and bounded on D, for bounded r(t) and y,,(¢). Hence f is locally Lipschitz. It is
not globally Llpschltz since [8f/8z] is not globally bounded.
(6)

f(z) = Az — By(Cz)

where (') is a dead-zone nonlinearity. The dead-zone nonlinesrity is globally Lipschitz. Hence f is globally
Lipschitz, which implies that it is locally Lipschitz on D, for any r > 0.

¢ 3.3 For each zg € R, there exist positive constants r, L;, L2, k;, and kg such that
1f12) = AW < Lilz -yl 1fa(=) = oW}l € Lalz —yl, |fr(2)] S hu, |F2(2)1 S o

for all z,y € {z € R | Iz ~ 0| <r}). For f = f1 + fa, we have

(=) — fON = 1/1(2) - ily) + falz) — falw)l £ Lalz — gl + Lalz — 4} £ (£a + L)l — ol
For f = f1f2, we have

H2) - f@) = |A@)fE) - AWMLY = AR - L@@ f0) + Al ) - A ALE)
/12 1f2(@) = W+ 1520 1fi(2) - )] S kiLalz -yl + ks Lajz - 3]
(k1Llz + k2 Ly)|z ~ g
For f = f» 0 f1, we have
|£(z) ~ F) = |f2(/1(2) - f2(f1(¥))] £ L2l f1(=) = /1(9)] < LaLa|z — |

o 3.4 The function f can be written as f(z) = g(z)Kzh(¢(z)) where

3 ify>u>0
h(y) = { and 4(z) = g(z)||Kz]|
i fy<py

A 1A

The norm function ||K'z|| is Lipschitz since
| 1K=l - IKyll | < 1Kz - Ky|| < 1K llz - vl




Using the previous exercise, we see that (z) is Lipschitz on any compact set. Furthermore, g(z)Kz is also
Lipschitz. Thus, f(z) will be Lipschitz on any compact set if we can show that h{y"} is Lipschitz in ¢ over
any compact interval [0,b]. Now if ¢ > 4 and v > p, we have

V(o) — ()] = ‘3}2— - 51; %ﬁ < ’-—:5|¢'2 —

If 42 > p and ¥ < i, we have

() - hp)] = | =~ =2 L i

11’11:;»,-;;
Yo 4l B Y2 e T pn

1
< ﬁlﬂ’z—wﬂ'ﬂ

If Y1 < s and Y2 < 4, we have

1 1 1
Ih(ws) - h(w)] = |; - ;l =05 T vl

Thus h(1) is Lipschitz with a Lipschitz constant 1/u2.
e 3.5 There are positive constants ¢; and ¢ such that

Cluxua < ":t”g < 02"3”as VzeR"

Suppose
1£®) = F@)lla < Lally = zlla
Then
/@) - @l < calf3) ~ $@la < caLilly = alla < L2y~ 2l

Similarly, it can be shown that if f is Lipschitz in the f-norm, it will be Lipschitz in the a-norm.

e 3.8 (a)
o
z(t) = :ro+/tﬂf(1',:c(1‘)) dr
. at .
Izl < lzoll + f I£(r,z(r))) dr
&
< lholl + f, [k + Eallz(r)] dr
) 4
= llzoll + kalt — to) + k2 f lz(r)] dr
to
By Gronwall-Bellman inequality

} 4
Nz(t)] < llzoll + k1 (2 — 20) + f [lzoll + k1(s — to))kae***~*} ds
-
Integrating by parts, we obtain
k
2]l < lizoll explkz(t — to}) + k—:{exl)[kz(i —t)] -1}, Vi2to

(b) The upper bound on ||z(¢)]| is finite for every finite ¢. It tends to oo as ¢t = co. Hence the solution of
the system cannot have a finite escape time.




» 3.7 It can be easily verified that f(z) is continuously differentiable. Hence, local existence and uniqueness
follows from Theorem 3.1. Furthermore,

llg(z)ll2

1
1 z)llz = ﬂm 5

IA

Hence 1
llz@)llz < Hzollz + 'z-(t —to)

which shows that the solution is defined for all ¢ > #,.

¢ 3.8 It can be easily seen that f(z) is continuously diﬁereﬁtia.ble and
If (@)l < k1 + kellzll, ¥z R?

for some positive constants &, and k;. Apply Exercise 3.6

¢ 3.9 Due to uniqueness of solution, trajectories in the plane cannot intersect. Therefore, all trajectories
starting in the region enclosed by the limit cycle must remain in that region. The closure of this region is a
compact set. Therefore, the solution must stay in a compact set. Apply Theorem 3.3.

¢ 3.10
j [ “’(m ) + T2 2.2 = T R-Tz +u
! C ! ], L( 1 )

where R = 1.5, u = 1.2, and the nominal values of C and L are 2 and 5, respectively. Let A = [C, L]T. The
Jacobian matrices [0f /0] and [8f /8], are given by

8f _[ - &¥(=) El'] 8f _ [ ~ dsl-b(z1) +z2] (]
dz -3 =-$l"@& 0 — f2(—21 — Rz + u)

Evaluate these Jacobian matrices at the nominal values C =2 and L = 5. Let

u 2=
9A nominal %4 Te
Then of of
S= = S+ == , S(G)=0
or nominal oA nominal (

The augmented equation (3.7) is given by

2y = 0.5[-h(z;) + z1]
g3 = 0.2(-z - 1523 +12)

i3 = 0.5[-—}1’(21 )za + 24] - 0.25[—h(.’!:1) + .’Bz]
T4 = 0.2('—33 - 1.5:1.'4)
25 = 0.5[-k(z1)zs + 74)

2¢ = 0.2(—z5—1.52¢) — 0.04(—2z; — 1.522 + 1.2)
with the initial conditions

21(0) = T1i0, .’l:z(O) = T0, 233(0) = $4(0) = 35(0) = 2'6(0) =0




* 3.11
iy =39, &3=-2z1+6&(1-2zd)z,

Denote the nominal values of £ by £o. The Jacobian matrices [8f/8z] and [8f/8¢], are given by
2= 1m0l ] 5[0

oz ~1-2z122 e(1—2%) |' B~ | (1-2)ze
Let
s=22 2 { z3 ]
O nominal Z4
Then Py af
S§= = S+ = , S(0)=0
Oz nominal e nominal
The augmented equation (3.7) is given by
&I = T
&z = —z4+¢&(l— zf)zg
£z = Iy

g = —[1+ 2cpx122) T3 + £l — .Tg):n +{1- z%).’l:z

with the initial conditions
z1(0) = z10, %2(0) = 220, 23(0) = 24(0) =0

e 3.12

L2 _1 - -— 1 3
T1=2T DpE=—ElE: -T2+ 3%2

Denote the nominal values of ¢ by £. The Jacobian matrices [6f/8z] and [8f/O¢], ave given by
3f__[0 'i' ] 3f_.- —;l.rz; ]

% | - c1-ad) | % | -(m-z+idd)
Let _
8= —6—?— =] ]
Be nominal | T4
Then af 8¢
§= = S+ = , S(0)=0
Oz nominal O nominal
The augmented equation (3.7) is given by
5 = -l—z
1 = P 2
S
Ty = =—gpl|lZy—22+ 532
3 = -La: -
3 - Eu 4 Eg 2
E4 = =-coz3+ Eo(l - Ig)z.‘ - (Il -T2+ -;:zg)

with the initial conditions _
71(0) = Z10, 22(0) = 290, 23(0) = 24(0) =0




e 3.13
# =tan"Y(ar;) - 2122, = b::f — ¢T3

Let A = [a,b,¢c]7. The nominal values are ap = 1, by =0, and ¢y = 1. The Jacobian matrices [6f/6z) and
[8f /8], are given by

8f_ ﬁ:f,;f—l'z -~Ty Bf ﬁi;? 0 0
oz T

2bzy ~c 0 3z -z
Let
6o dz _ [ z3 =5 37
0A nominal Ty Te Ts
Then 5
~_ Of af
S= = - =
0:: nominnls M a’\ nomin;l, S(O) 0
The augmented equation (3.7) is given by
n = t.an"‘(:n) - X122
.’i:g = =—I9
& = ( ! —- ).1: - + 1
3 = 1 +x§ 2 ]33 — 114 -1'+_I:1“’
B = -3y
g = ! -
5 = 1+:L‘¥ I2 1 T5 —T1%s
g = —-Zg + :B'g
&7 = ! z: -
T = 1+ z? 3 | T — X1T§
:1'73 = =g =— I

with the initial conditions
21(0) = 210, %2(0) = Z20, 23(0) = 24(0) = z5(0) = z6(0) = z7(0} = 23(0) = 0

¢ 3.14 (a) Letp= [ ; ] be the vector of parameters.

P [ ~(1/7) + A/ cosh® (Az;) =)/ cosh®(Az;)
oz /\/ Coshz(Ml) —(I/T) + A/ COShz(Mz) ]
B=9%_ [ ~(/)m 2/ cosh(Az1) — 22/ cosh®(Az2)
dp -(1/7%)z2 1/ cosh?(Azy) + 23/ cosh? (Az;) ]

The sensitivity equation is given by
S=AS+ Bo, $§(0)=0

where Ap and By are evaluated at the nominal parameters. This equation should be solved simultaneously
with the nominal state equation.




(b)

T

= T + Tax3

~(1/7)r? + z1[tanh(Az1) — tanh(Az3)] + xaftanh{Az;)} + tanh(Az, )]
—(1/7)r? + rcos(8)[tanh(Az;) — tanh(Az,)]

+ rsin(#)[tanh{Az1} + tanh{Az;)]

(1) + 2r(| cos(®)] + |sin(®)])

(/) + 22

IA A

(c) By the comparison lemma, r(t) < u(t} where u satisfies the scalar differential equation

u=—-(1/Tu + 22, u(0) = r(0) = ||z(0)[|»

The solution of this differential equation is

exp(=t/r)zO)l + [ " eapl—(t - 0)/7}2v2 do

exp(—t/7)|z(0)]l2 + 2v27[1 — exp(—t/7)]

u(t)

e 3.15 Let V = ||z}|} = 27 + z3. Then

"Taking W = VV =

At V =0, we have

, 4,z 47,1
V = 24 Vpody = —272 — 23 4 —2122 4 2172
Z12) + 2T372 2z) 2$3+1+z§ T+
| 2] 1

< =2V +dnf-—- +4

— + lxlkl"'zg + Ixz'l_’_z%

< -2V + 21| + 23 (sinceL'd

= 1+ ~=2

< W42V (since |zl € vnilzlk)

||z]lz, we see that for V' # 0,

W= <-W+v2

by
3=

[Wit+h)-W(t)| _ [W(t+h) 1
[ - h T h

flz(¢ + h)ll2

Similar to Example 3.9 of the textbook, it can be shown that

t+h
hl_i,%l.p %'[ "f(ﬂ:(f))“z dr=0

Thus D*W({t) < —W(t) + v2 for all £ > 0. Let u(t) be the solution of the differential equation

4= —u+v2, u0)=|lz(0)l:

By the comparison lemma,

lz(®)z < v(t) = e~ liz(0)ll2 + V2 {1 ~ ™)




e 3.16 Let v = 2%,

2rsint
< -
T+2 < 2v+1

0 =2rk= 22+
let u(2) be the solution of the differential equation
t=-2u+l, u(0)=2

Then . 2
o(t) < ut) =27 + f e~ 2" gr = lig—"—
1]
Thus
-2t
2(8)] = VoD < /LS —
¢ 3.17 (a)

d
E’T“’ =227 = 227 f(t,2)

d
%2 2| < 2lallzllf (& 22 < 2Lfl)3

(b) Let V(t) = z7(t)z(t) and Vo = zJ zp, then from part (a) we have
—2LV(t) < V(t) < 2LV (f)

Divide through by V(t), multiply by dt, and iritegrate to obtain

i v t
-szdts 4‘55[21,&
to Vo 14 tg

_2L(t-t)) <In (%f’) <2L(t — to)
Vo exp[—2L{t — 1)} < V(t) < Voexp[2L(t — &)

Taking the square root yields
lizollz exp[—L(z — to)] < llz(t)2 < lizoll2 exp[L{t - to)]

e 3.18 Let z(t) = y(t)e**~%)_ Then
t t
z2(t) £ b+ f e 0)kyy(r) + k) dr = Ky + / [kzz(‘f) + kae"'('""’] dr
to to
t
= ki + sz z(r) dr + (ka/a) [exp"’("'“) —-1]
to
From Gronwall-Bellman inequality,
t
z(t) < k1 + (ks/a) [exp"“"") —1] + / {h + (k3/a) [exp""“") —1] } kye*a(=9) dg
io

By evaluating the integral, it can be shown that

ks k kak:
£) < 23 galt—to} (k - ._3) Faft—to) o 2273 fali—te) _ okalt—to)
Z{)—ae M S +a(a-—kz)[e € ]




Hence

ye) = (et < fi[u- b ]+[kl-ﬁ ok ]e(*""“’)("“’)

a (a— k2) a  alo- k)
- L _ k3 (ka—a)(t—1g)
= k)t ["’ (ﬂf—kz)]e
k
- —(a—kg)(!—to) 3 - —(a—kz){l—f—o)
kie + a= i) [I e ]

* 3.19 Choose the covering of 5 as described in the hint. Within each neighborheod we have
7 (=) = F@)l £ Lillz — yi}, V =,y € N{ai,ri)

If z,y € SNN(a, ri) for some 1, then the Lipschitz condition holds with L = L;. Otherwise, ||z—y|| > min; r;.
Since f(z) is uniformly bounded on S, we have

if(@)-f@ <C, Yz,y€S, C>0

Therefore, whenever ||z — y|| > min; r;, we have

iz —yll

If(z) — Flll <

min; Ti

C
L-max{Ll’Lz’""Lhmin,’r,-}

e 3.20 We have
M@ ~-fl < Llz-yll, Yz,yeW

Given ¢ > 0, let § = ¢/L. For all [|lz — yj| < 4, we have ||f(z) — f(y)l| < L8 = ¢, which implies uniform
continuity.

e 3.21 The vector y is defined only for  # 0. For x = 0, we can take y as any vector with ||y|l = 1. Now,
for 2 # 0 we have

n n ? s zP 1 n [P
yTI=Zini=Z LS () p—1 2'2i|"= el = fz]lp

-1 -
i=1 = =il ll=llz™" =t =l

n n ”n
1 1
Mol =" (3l = —mg S it = = S il =1
R T Tl 2!

=1
For p = o0, take
{1 if i = argmax |z;]
=10 otherwise
Then, 7z = [{zljeo and |lyll; = 1.

e 322
<L, Y(t,z)€[a b xR"

of
[5z¢0

then, from Lemma 3.1,
If(t, ) - f(t.2)ll < Lilz —yll, ¥ (¢,2) € [a,8] x R"




Alternatively, suppase f(t,x) is globally Lipschitz. By the mean value theorem
af;
filt.y) - filt,z) = -5;(1,2) (y~2)
where z =az + (1 —a)y and 0 < @ < 1. Then

= ”ft(t y fl'(tv I)" S Li“y h :EII, v z,y € Rn,V te [a: b]

f Ok¢, ) (y - 2)

Hence

<Ly Yz, ye R",Vi€[ad
e )

Taking y = Sz with 8 > 1,wehavez=[a+(l—a)ﬁ]xd§—y:c, and

84 (t,v2) (8- 1)a
(8- il

<L, YzeR"Wteab

"<L,‘, v ER“,V(‘«E ,b
e Sie Ve la, 8]

By letting 8 approach 1, we conclude that

"<L, VzeR“Wte[ab
I )

e

Since this inequality holds for every 1 < i < n, we conclude that the Jacobian matrix [0f/6z] is globally
bounded. ; : .

which shows that
€L, Yz€R"VtE€[ab]

¢ 3.23 Set g(o) = f(oz) for 0 < o < 1. Since D is convex, cx € Dfor 0 < o < 1.

g'(o) = gi (0’3‘)'67 = %:-(az) z

1 1
1@) = 1@ - 10 =90 -50) = [ ¢() dr= [ Lio) as 2

. 8.24 (a)
av

1
1
I do < [ ewo do o < Gl

V(t,z) = / —(t o0x) doz <

(b) Since
allzlf < V(t,2) < sediell’, VzeD

we must have ¢ < ¢y
(¢) Consider two points 2, and z; such that az; + (1 ~ a)2z # 0 for all 0 < a < 1; that is, the origin does




not lie on the line connecting z) and z;. The Jacobian [8W/8z] is defined for every z = az; + (1 - a)z;
and given by
(1,2) = e 2 (1,2)
2V, z) 6z
By the mean value theorem, there is a® € (0,1) such that, with z = a*z; + (1 — a*)z3,

Witas) = Wibz) = ZL(62) (53 =) = o BL(0,5) (- o)

aw
Oz

Hence 1 e
W(t,zs) - W(t,z1)| € ———— cullz|l l|lz2 — z:]| £ To— X
I ( 2) ( l)l = 2\/E ”z“ C.l,H " " 2 1" 2‘/‘-:7 " 2 1"

Consider now the case when the origin lies on the line connecting 7, and z; that is, 0 = apz; + (1 — ag)z,
for some ag € [_0, 1]. We have

W t,22) = W01 = W t22)| = V) < | S sl

W (6) - W0 = W) = VT € oSl

|W(t,$2) - W(tr zl)l = lW(t, 22) - W(t! 0) + W(t,O) - W(tv zl)l =< @("‘till + ”31")

Since the origin lies on the line connecting x; and z;, we have ||z2{| + {|z1]] = ljzz — z:||. We also have
1 <€ \/e4/2¢;. Therefore, '
[+

|W(t,z2) ~ W(t, 21)| < l[z2 = 21l

2,/e1
Thus, the preceding inequality is satisfied for all z;,2; € D.

e 3.25
(2) ‘
2(6) = 2(a) + / Fr, () dr, ¥ [a,) C [to, T)

Since f(t,z) is piecewise continuous in ¢t and continuous in z, there exists a constant M > 0 such that
il£(t,z(t)]] < M for all t € [t5, T). Therefore

:
5/ Mdr=M{-q)
& .

L  tr,2(r)) dr

ll=(t} — z(e)ll =

which shows that z(t) is uniformly continuous on [ts,T").
(b} : i
oT) =2(t0)+ i, [ £(r,5(r)) dr = a(ta) + j: fira(r)) dr

since z(t) is uniformly continuous. Thus
z(t) = z(to) + f t f(r,z(r)) dr, Vi€t T]
to

is a solution on [t, T]. Since W is closed, z(T') € W.
(c¢) Apply the local existence and uniqueness theorem at (T, z(7T")).




e 3.26 Suppose there is no such ¢. Then, y(t) € W for all ¢ € [t,,T). From the previous exercise we can
extend the solution beyond T, which contradicts the claim that [tp, I") is the maximal interval of existence.

s 3.27 Set y(t) = z;1(t) — z2(t) and g = py + pa.

(&) 1 () — 22 (D))
lE1(2) = f1t, 22(2)) - 22(2) + fa(t, 2a(2)) + fu(2, 21(2)) — Salt, z2())}

< mtpa+ Lz () - wall = s+ vl

t i
t (s} ds ; d
e (@)l llv(to) + L y(s) ds|l < v+ L llg(s)ll ds

[Fa

L
vuit—a)+ [ Liyo)l ds
a
Application of Gronwall-Beliman inequality yieids
¢ ‘Ld
M@l < v+ u(t —a) + f v+ u(s — a)|Lel 2 ¥ ag
a

After integrating the right-hand side by parts, we obtain
Lit-a) | [, Lit-a) _
(o)l < yekte==) + £ [et-0) 1]

e 3.28 Let s "
2(t) = 7o + [ fo,2(s)) ds,  y(t) =0+ [ f(s,u(s)) ds
t £

where 13 > tg. Then
ty 1
o) - vt) = [ Fs.2(6) do+ [ 11(s,4(6)) = S52(6))] ds
t0 % -
We have [[f(s, z(s))|| < M for all ¢ € [to, 1], and ||f(s,y) — f(s.2)l| < L||lz — yll. Therefore

lz(t) - vl S M(th ~ to) + [ Lilz(s) ~ y(s)) ds

By Gronwall-Bellman inequality
lz(t) - y(e)il < Mty — to)eH 4=
Hence, over any compact interval of time, we have
flz(t) — (@)l < K(tp — to)
s 3.29
&= f{t,z), z(to) =7

Setting y = x — 7, we obtain
y=ft.y+n), ylto})=0
Since f is continuously differentiable in z, the solution will be continuously differentiable in #. Let

yn(t,n) = ayg;") = azg’;q) —I=mx,(t,n) -1




From (3.4) 5
ayn(t,n) = A(t,nyq(t,n) + B(t,n), ya{to,n)=0

where
aen = Leven+n = Zesem
B(tvﬂ) = %ﬂ{(t:y(taﬂ)‘i‘ﬂ) = g{(t,ﬂ?(t,ﬂ)) = A(t,ﬂ)

Thus, z,(¢,7) satisfies the variational equation

% 2altn) = AWzt 2altorn) =1

¢ 3.30
t
s(t.a,m) =7+ ] f(s,2(s,0,m)) ds
}
2ol) = Boatban) = ~fan+ [ Ziosean)zztean d
it

zolt) = ;,?-,,za,a,m = I+ j gg(s,x(s,a,nng;m(s,a,n) ds

Therefore

t
o) + 2q(0)fam) = [ { S or2(0,0,1)za(6) + oa(e) (0,1} e
Differentiating with respect to ¢, we see that z4(t) + z4(t)f(a, n) satisfies the differential equation

2 za(t) + 2401 (0,m)] = 2 (5, 2(t, 0,20 (6) + 2ol f (@1 1)]

with initial condition
zo(a) + zy(a) f(a,n) = — f(a,n) + f(a,n}) =0

Thus
zo{t) + z4(t) fla,m) =0, Vi€ lat]

¢ 3.31 Put .
20 = 2(@)+ [ F(00(e)) ds

so that z(a) = z(e) and 2(t) < y(t) fora <t < b.
2= f(t,y(t}) < f(t, z(2)}
From the comparison lemma, we conclude that

z(t) < z(t) = y(}<=(t), Va<t<h







Chapter 4

e 4.1

(1) asymptotically stable (2) unstable (3} asymptotically stable
(4) unstable {5) stable (6) unstable

e 4.2 Let f(z) = az? + g(z). Near the origin, the term az? is dominant. Hence, sign(f(z}) = sign(az?).
Consider the case when a < 0 and p is odd. With V(z) = }2? as a Lyapunov function candidate, we have

V = z[az® + g(2)] < az?P*! + k|z|PH?

Near the origin, the term az”t is dominant. Hence, V(z) is negative definite and the origin is asymptotically
stable. Consider now the case when @ > 0 and p is odd. In the neighborhood of the origin, sign(f(z)) =
sign(z). Hence, a trajectory starting near 2 = 0 wilt be always moving away from x = 0. This shows that
the origin is unstable. When p is even, a similar behavior will take place on one side of the origin; namely,
on the side 2 > 0 when a > 0 and 2 < 0 when a < 0. Therefore, the origin is unstable.

e 4.3 (1) Let V(z) = (1/2)(2} + z3).

V= (=21 + 21Z2) — 'z%

In the set {}iz}|z < r*}, we have {z1| < r. Hence,

T

e a2 2 _ |t 1 =r/2 } | =]
vs-ad-adsrmtial=-[ 2] [ L Y[ B

V is negative definite for r < 2. Thus, the origin is asymptotically stable. To investigate global asymptotic

stability, note that the solution of the second equation is zo(t) = exp(—t)zz(0), which when substituted in

the first equation yields
&1 = [=1 + exp(=t)z2(0)}1
~ This is a linear time-varying system whose solution does not have a finite escape time. After some finite time
the coefficient of z; on the right-hand side will be less than a negative number. Hence, lim; o 23 (8} = 0.
Thus, the origin is globally asymptotically stable.
(2) Let V() = (1/2)(zf + 23).
V=—(z}+23)(1-22-23) = -2V(1 -2V)

In the region V(z) < 1/2, V is negative definite. Hence, the origin is asymptotically stable. For V > 1/2, V
is positive. Hence, trajectories starting in the region V' (z) > 1/2 cannot approach the origin. In fact, they
grow unbounded. Thus, the origin is not globally asymptotically stable.

(3) Let V(z)} = 27 Pz = p11z3 + 29122122 + p22x3, where P is a positive definite symmetric matrix.

V= —2p13:t'f + 2(p11 — P12 — Pra)T1 T2 — 2(p2y — pu):'t: + Higher order terms




Near the origin, the quadratic term dominates the higher-order terms. Thus, V will be negative definite in
the neighborhood of the origin if the quadratic term is negative definite. Choosing py2 = 1, py2 = 2, and
P = 3 makes V(z) positive definite and V(z) negative definite. Hence, the origin is asymptotically stable.
It is not globally asymptotically stable since the origin is not the unique equilibrium point. The set {z? =1}
is an equilibrium set.
(4) Let V() = =3 + (1/2)z3

V= -2z} ~ 23,73 + 25125 - x§ = —z3 -}
Hence, the origin is globally asymptetically stable.
* 4.4 (a) Take V(w) = (1/2)(hwf + Jow? + J3wd) as a Lyapunov function candidate.

V = Juwin + Jawatss + Jywaivs
= (J2 ~ B)wiwaws + (5 = Jwywaws + () = Jawiwews
0

The origin is stable. It is not asymptotically stable since V is identically zero.
(b) The closed-loop state equation is

Jun = (Jy = Jwaws = kywy
Jog = (J3 — Jy)wgwy — kawn
Jowz = (N1 = Jo)wrws — ksws

Using the same function V(w) as in part (a), we obtain

V= —kywd — kg — kswd
Thus, the origin is globally asymptotically stable.
o 4.5 Let g(z) = VV; gi(z) = 8V /bz,.

8gg 8 8V 9V

— I — —

8z; Oz; 82 Bz, Oz;

Similarly
By _ o oV _ &
8z; ~ Oz 0z;  Bz.;8%;
Hence
Og: _ Bg;
Ox; = 8z,
Alternatively, suppose 5 5
—g.i.. = ...2:7., y & -
Bz, ~ Bz’ Yi,j=1,...,n
Define
2
V(z) / 1) (yl: 10} dyl +/; 92(2'1vyz,0. v vo) d!lz

+ - -+j; n(T1,Z2,...,Zn_1,Yn) dyn




oV =2 8gs
By = gl(zl,o,...,0)+/‘: a—z;(zl,yg,o,...,(])dy,

Tn agn
4+ -+ a——(zl,zg,---,mn—lsyﬂ) dyn
0o 0%y

2 dgy
= gl(zl,O,...,0)+/ —($1,y2,0,...,0) dys
o Ow

n 3¢,
o = (z1,Z2,. .., Tn-1,¥n) d¥n
o Oyn

= yl(ml;ov-..p0)+gl(zl'lyzio""’o)lgn
+ e gl(:cl,:ﬂz,- . -,zn—layn)lgn

= q(z)
Similarly, it can be shown that
8V )
Fn gi(z), Vi
e 4.6 Try
_ | az1 + Bz
9(z) = [ vz + 029 ]

To meet the symmetry requirement, take v = .
V(z) = (az1 + B22)32 = (821 + 62)[(Z1 + 22) + h(z1 + 22)]

Take & = 5. .
V(z) = —B2} + (o — 28)z12z2 — B(z1 + 2 )h(z1 + 23)
Taking a = 23 and § > 0 yields
' V(z) = ~B2% - Blz1 + 22)h(2, + 22)

which is negative definite for all z € R2. Now
L . 2
o(2) =ﬂ[ 2 ]z"é‘ Pz = V(z) =L §") dy = 527 Pz

where P is positive definite. Thus, V(z) is a radially unbounded Lyapunov function and the origin is globally
asymptotically stable.

e 4.7 (a) Let VV(z) = g(z). Then, V = —gT(z)Q#(z). Choose g(z) = Pz so that V(z) = (1/2)zT Pz. We
need to choose P = PT > 0 such that V = —zT PQ¢(z) is negative definite. Choosing P = Q™! yields

V=-—2T¢(z) =~ 235¢i(3i)
=1

V is negative definite in the neighborhood of the origin because y¢(y) > 0 for y # 0. Hence, the origin is
asymptotically stable.

(b) The function V(z) is radially unbounded. The origin will be globally asymptotically stable if V is
negative definite for all £. This will be the case if y¢;(y) > 0 for all y # 0.

(c) The function ¢; satisfies the condition y¢;(y) > O for all y # 0. The function ¢, satisfies the condition
only near y = 0 because ¢, (y) vanishes at y = 1. Thus, we can only show asymptotic stability of the origin
using the Lyapunov function V(z) = z7Q -1z = 2 + 22,25 + 223.




s 48
(a) V(0)=0and V{z) >0for z £0.

231(1 +I1) - 2-171

V(I) (1 T 51) Iy + 22280
2.1'1 —6xy 4z, (27] + 32)
w2 [ 7 +222( - T w
1222 412
- u—f‘—?‘* <0, YzeR? 240 .
(b) The slope of the tangents to the hyperbola is given by
doy_ -2 _ -
& (@ - VAR il Vam A1
On the other hand,
f2 _ ~2(z1 + 73)
fl hyperbola -621 + 232 (1 + x:f)z ¢==:§7!
-1
T 223 +2V22, +1
For z; > /2
273 + 2v221 +1 > 323 — V22, + 1
Hence .
L] > slope of tangents
h hyperbola
Moreover 6 Y "
—6x, 4 _ 4+6v2n +25 + 4z
= + >0
P = == % R = T - )
Hence, the vector field on the branch of the hyperbola in the first quadrant always points to the right of the
hyperbola.

(c) Since trajectories starting to the right of the hyperbola do not reach the origin, the origin is not globa.lly
asymptotically stable.

e 4.9 (a)

2
=0 = V(z)=-%-+z§ -3 00 a8 |r3] & oo

za=0 = V()= ---—5+.'n:2 - 00 28 Jzy| = oo

(b) On the line z; = z,, we have
4z}

——
T+ 422 1as|r| = oo

Viz) =
» 4.10 (a)

1 1 T
tTPf(z)+ ff(z)Pz = 2TP /0 g%(m)xdoq- /o z7 [%(az)] do Pz

1 T
:rT/o {P%(az)+ [g{'(az)] P} doz < -z7z




(b) V(2) = f¥(z)Pf(z) is positive semidefinite. To show that it is positive definite, we need to show that
V =0 & =z = 0. Since P is positive definite, we need to show that f(z) = 0 if and only if x = (; that is,
the origin is the unique equilibrium point. Suppose, to the contrary, that there is p 3 0 such that f(p) = 0.
Then,

Pp<-[p"Pf(p)+ fT(p)Ppi=0 = p=0
which is a contradiction. Hence, the origin is the unique equilibrium point. To show that V is radially
unbounded, we note that for any x € R®

T
S = @ ST @Pe s g, Ve R

Suppose now that ||f(z)|l2 < ¢ as ||z}}; = co. Then

=P (M2 _ [tz lallPllze . ||Pl2c

=+ 0 as [jz]lz —= oo

= = Tzlg = W=l
But this is a contradiction since TPIe) .
T T
——L L - - YzeR"
I3 2’

Thus, as ||z{|2 = oo, the magnitude of at least one component of f{z) must approach co. This shows that
V(z) - o0 as ||z||z — oco.

{c) We have shown that V'(z) is positive definite and radially unbounded.
T
Vi) = lz) {P @] + (g P} 160) < - @I

Since f(z) =0 z =0, V(z) <0, for all z € R™, z # 0. Thus, the origin is globally asymptotically stable.

¢ 4.11 Since Vi(z) is not negative semidefinite, there exists a point o arbitrarily close to the origin such
that Vi(zo) > 0. Let U = {z € B, | Vi(z) > 0}, where B, C D. Since Vi(z) is positive definite, we have
Vi(z) > 0 for all z € U. Hence, the origin is unstable.

® 4.12 Since Vj(z} is not negative semidefinite, there exists a point z, arbitrarily close to the origin such
that Vi (zp) > 0. Let U = {z € B, | Vi(2) > 0}, where B, C D. Since W(z)} > 0 for all z € D, we have

Va(z) = W(z) + AVi{z) >0, Yz eU
Hence, the origin is unstable.

e 4.13 (1) Apply Chetaev's theorem with V(z) = (1/2)}{z? — z2). The function V is positive at points
arbitrarily close to the origin on the z;-axis.

V(z) = zi(zd +2222) — z2(—22 + 3+ 2123 = 23)
= (¢} +2122)* +25(1 — 23 — 7, — )

For any 0 < ¢ < 1, there is a domain around the origin where
l1-z3-2—23>¢>0

Hence, in this domain, we have )
V(z) > (e} + 2122)* + ez}




0.8
0.6f
0.4}
021

0 0.5 1
Figure 4.1: Exercise 4.13 (2).

The right-hand side of the preceding inequality is positive definite; hence all the conditions of Chetaev’s
theorem are satisfied and the equilibrium point at the origin is unstable.
(2) The system

i = -2} + 23 = fi(z), £ =2} — 23 = fa(=)
has two equilibrium points at (0,0) and(l 1). Theset ' = {0 < z; <1} N {z3 > z}} N {22 < x?} is shown
in Figure 4.1. On the boundary 9:: =z?, f =0 and f; > 0; hence, all trajectories on this boundary Liove
into I'. On the boundary z; = zi, f1 = 0 and f; > 0; hence, all trajectories on this boundary move into
[. Thus, I is positively invariant. Inside I', both f; and f; are positive. Thus all trajectories move toward
the ethbnum point (1,1). Since this happens for trajectories starting arbitrarily close to the origin, we
conclude that the origin is unstable.

e 4.14
T1 21 1
/o vg(y)dvz_/; y dy = 52

Therefore,

Viz) > 32} + 2,2, +z§=§-zr[ : ; ]z

The matrix of the quadratic form is positive definite. Hence, V(x) is positive definite for all z, and radially
unbounded.

vV = 319(11)&1 + g + TaEy + 2202

9(z1) (3132 — 2§ — 2123 — 25172 — 223) + 73
~g9(z1)(Z] + 22122 + 223) + 23

= —g(z1)2"Qz + 3

where Q = [ i ; ] is positive definite. Since g(z;) > 1 and 27Qz > 0, we have

V < —(zf + 2212, + 223) + 2} = — (22 + 22323 + 22) = (21 + 22)°
This shows that V is negative semidefinite. We need to apply the invariance principle.

V=0 = 0<—(z1+2:) = 02 (21+2) = s +2,=0




1)+ z2(t) =0 = H1()+320)=0 = () =0 = n(t)=0

Since V(x) is radially unbounded and all the assumptions hoid globally, we conclude that the origin is
globally asymptotically stable.

¢ 4.15 (a) The equilibrium points are the roots of the equations
O0=z23, O0=-hi(z1)—z2-ho(z3), O==z3—73

=0 = 23=0 = h1(11)=0 =>21=0

Hence, there is a unique equilibrium peint at the origin.

(b) V() is the sum of nonnegative terms; hence V(x) > 0. To show that it is positive definite for all x,
we need to show that V(z) =0 = =z = 0. Since yhi(y) > 0 for all ¥ # 0, the integrals f:' hi(y) dy and
Jo* ha(y) dy vanish only at z; = 0 and z3 = 0, respectively. Hence, V(z) is positive definite.

(c)
V = h1 ()T + Ta|—h1(21) = T2 = ha(23)] + ha(23)(T2 — T3) = —22 ~ Z3ha(xs3)

V(z) is negative semidefinite for all , but not negative definite because V(z) = 0 when z; = 73 = 0 for any
z;. We apply the invariance principle.

zz2(t) =0and z3(3) =0 = hi(2:(2)) =0 = z1(1) =0
Hence, the origin is asymptotically stable.
(d) To show global asymptotic stability we need V() to be radially unbounded. This will be the case if the
integrals [’ hi(y) dy, i = 1,2, tend to infinity as |z| - co.
e 4.16 Let V(z) = (1/4)z} + (1/2)z3.
V =iz —zlzs — 28 = -z}

V(z) is negative semidefinite for all .

z{z) =0 = () =0 = 7,{(H) =0
By the invariance principle, the origin is globally asymptotically stable.
. 4,17
()

£ =23, iI3=-—g(z1)~ h(z1)z2

At equilibrium,
z2 =0& g(x) +h(z1)£2 =0 = 22=0& g{z;) =0

Assume that g(z1) = 0 has an isolated root at the origin. Then, the origin is an isolated equilibrium point.
(b) With V(z) = ;' 9(y) dy + 123, we have

V(@) = g(21)as — 229(21) — h(z1)z§ = —h(z1)23 < 0
Assume that h{(z1) > 0 V 21 € D (a domain that contains the origin). Then, V < 0 and

V=0 = hm:()s3(t) =0 = () =0 = g(z:(t)) =0 = () =0




Hence, by LaSalle’s theorem (Corollary 4.1}, the origin is asymptotically stable.

(c) With V(z) = § [z2 + 7 h(y) dy]” + [ g(y) dy, we have

vV = [.’52 + /; N h(y) dy] [£2 + h{z1)51] + 21 9(21)

[’2 + fo hly) va [~9(z1) = h(z1)z2 + h(z1)25] + 229(1)
= —g(e) fo “ hy) dy

Assume that g(z1) [7* h(y) dy > 0 and [* h(y) dy # 0. Then , V < 0 and
V0= gz:(t)) =0 = () =0 = z4(t) =0
Hence, by LaSalle’s theorem (Corollary 4.1), the origin is asymptotically stable.
¢ 4.18 The system has an equilibrium point at y = Mg/kand y = 0. Let 2, =y - Mg/k and z3 =1y).

. N k 1 c2
I = T2, Ty == 'ﬂxl - sz - ‘Mf-'ﬂzlle

Take V{(z) = ax] + bz}, with a,b > 0. V(z) is positive definite and radially unbounded.

- bEY 2be 2bca
V(a:) = 2 ( - F) 13 — — Tl:l:g - ——M—zglzgl

Taking @ = k/2 and b = M/2, we obtain

V(z) = 123 — 223|221 <0, V2

Moreover, ]
V=02 zt)=0 =2 5(t)=0

Using LaSalle’s theorem (Corollary 4.2), we conclude that the origin is globally asymptotically stable.
e 4.19 The equation of motion is

M(g)§ +Clg,d)d + D¢ +g(g) = u
where M(g) = MT(q) is positive definite, M — 2C is skew symmetric, D = D7 is positive semidefinite,
g(q) = O has an isolated root at ¢ = 0, g(g) = [0P(q)/8¢]7, and P(g) is positive definite. The 2m-
dimensional state vector can be taken as z = g
(a) Let u = 0 and V = 14T M(g)d + P(g). V is a positive definite function of z.

. L U N N B . P .
V=¢"Mi+ -._;qTMq +g7¢= EqT(M ~20)4-¢"Dg~¢"g+9T¢=-¢"D§<0
Hence, the origin is stable.

(b) With 4 = —K4d, we have V = —GT (K4 + D) < 0. Moreover,

V=0= ¢=0=32§=0 = g(g)=0 = ¢g=0




Hence, by LaSalle’s theorem (Corollary 4.1}, the origin is asymptotically stable,
(c) With u = g(q) ~ Kp(g — ¢*) — K44, the equation of motion is given by
M{q)g+Clg. ¢} + Dy + Kplg~q*) + Kag = 0

There is an equilibrium point at g = ¢* and § = 0. Take

[l

V = 16T Mé + {7 Kye is positive definite.
V=TMj+ -Z-eTMe + eTK,e = -2-eT(M - 2Cé - eTer - éT(Ks+ D)é + eTK,e =—¢T(Kq+D)ée <0

V=0=¢é=0=é=0= Kee=0 = ex=0
Hence, by LaSalle’s theorem (Corollary 4.1), the equilibrium point (g*,0) is asymptotically stable.

s 4.20 According to LaSalle’s theorem, z(t) approaches M as ¢ = o0o. Equivalently, given £ > 0 there is

T > 0 such that
inf ||lz(t)—yl| <e, VT
yEM

Choose ¢ so small that the neighborhood N(p, 2¢) of p € M contains no other points in M.

Claim: ||z{t) —pl|l < &, for all t > T, for some p € M.

The claim car be proved by contradiction. Att=#; > T, let p, € M be a point for which ||z(t;) — ;|| <e.
Suppose there is time ¢z > #; such that |}z(t2) — |l = . Let p # py be any other point of M. Then

= |lz(ts) = ;1 + ;1 ~pli
2 lIn—pl-llzt) —mll 2 26~ = ¢

i -yl >
= inf l=(t) -yl 2 ¢

llz(t2) = pll

The last statemeni contradicts the fact that infyear lz(t) — y|| < € for all ¢ > T, which proves the claim.
Since this claim is true for any, sufficiently small, £ > 0, it is equivalent to z(¢) = p as t = oo, for some

pEM.

e 4,21

(a) oy
V(z) = 5oi = ~(VV)T(VV) <0

ViE)=0e VV(ir)=0s:=0
Hence, V(z) = 0 if and only if z is an equilibrium point.
(b) Every solution starts in a set £, with ¢ > V(zo). Since V < 0 in 2., the solution remains in £, for all
t > 0. Since £, is compact, we conclude by Theorem 3.3 that the solution is defined for all ¢ > 0.
(c) By LaSalle’s theorem, z(t) = M = {p,,...,p,} as t = co. Since the points p,,...,p, are isolated, we
conclude from Exercise 4.20 that z(t) — p; as t —+ oo for some p; € M.

0 4,22
Sufficiency: Suppose there is P = PT > 0 such that

PA+ ATP = -CTC




Let V{(z) = 27 Px. )
V(z) = ~2TCTCz <0

Viz)=0=Cz(t)=0=> Cexp(At)zo=0= 20 =0

since the pair (4, C) is observable. By LaSalle’s Theorem (Corollary 4.2), the origin is globally asymptotically

stable.
Necessity: Suppose 4 is Hurwitz. Let

P= j; " exp(ATHCTC exp(At) dt

P ig symmetric and positive semidefinite by construction. To show that it is positive definite, suppose it is
not so. Then, there is z # 0 such that zT Pz = 0. Consequently

O
/ z7 exp(ATH)CTCexp(At)z dt = 0 = Cexp(At)z =0=>z=0
0

Hence, P is positive definite. Similar to the proof of Theorem 4.6, it can be shown that P satisfies the

equation
PA+ ATP=-C"C

and that it is the unique solution. .

+ 4.23
(1) Let V(z) = 2TPz.

V(z) = 2T[P(A- BR™'BTP)+(A- BR™'BTP)TPja
Using the Riccati equation, we obtain
V(z) = -zT(Q + PBR™'BTP)z
Q>0=Q+PBR'BTP>0

Hence, V(z) is negative definite and the origin is globally asymptotically stable.
(2) When Q@ = CTC, we can only conclude that V(z) is negative semidefinite. But

V(z)=0 = 27(#)(Q+PBR'BTP)z(1)=0
= Cz(t)=0and R™*BTPz(t)=0

Due to the second identity, the state equation simplifies to
i =Az-BR'BTPz = Az
and it solution is given by z(t) = C exp(At)zo. Thus
Cexp(At)zg =0=>2z =0

since (A, C) is observable. By LaSalle’s theorem (Corollary 4.2), we conclude that the origin is globally
asymptotically stable.

s 4.24

T
Viz) = %f (x} - k%G(z)R“l(z)GT(z) (g_‘;)




Substitute for [0V /0z}f using the Hamilton-Jacobi-Bellman equation.

- oV vy

= _ TN AN A -1 T oV
V@) = -ato) - (k- }) S @R @67 (57)
If g(z) is positive definite and k > 1/4, we conclude that V{z) is negative definite; hence, the origin is
asymptotically stable. If ¢(z) is only negative semidefinite and k > 1/4, we can only conclude that V(z) is

negative semidefinite. But

eV

T .
E) =0 = &= f(z)

V(z)=0 = g(z)and G7(z) (

Since the only solution of £ = f(z) can stay identically in the set {g{z) = 0} is the zero solution, we see that
glz(t) =0 = z({)=0

By LaSalle’s theorem (Corollary 4.1}, we conclude that the origin is asymptotically stable. The origin will
be globally asymptotically stable if all the assumptions hold globally and V'(z) is radially unbounded.

e 4.25 Since (4, B) is controllable, the controllability Gramian W = f; e-4'BBT [e‘*“t]'r dt is positive
definite. Hence, W~ is positive definite. Note that

AW +WAT = f {4e=4BBT [e=A]" + e-4BBT 4] AT} &1
0

= - /o " % {e#BB™[e=4]"} &t = BBT -4 BBT [e~47]”
Hence,
(A~ BK)W + W (A - BK)T = AW + WAT - 2BBT = —¢~4"BBT [¢~A"|" — BBT
With V(z) = zTW ™z, we have
V(z) =z"W[(A - BK)W + W(A - BK)"|W™1z = —zTW? {e4AfBBT fe=47]" + BBT} Wiz <o

Hence, the origin of & = (A — BK) is stable; all eigenvalues of (A — BK) satisfy Re[\] < 0. Now we want
to show that Re[A] < 0. Let A have Re[A] = 0 and let v be the left eigenvector of (A — BK} corresponding

to A. Then
v*(A— BK) = A" and (A - BK)Tv = A*»

We have
(A— BK)W + W(A - BK)T = —eA"BBT [¢~4"]” - BBT
v*(A— BK)Wv +v"W(A - BK)Tv = - 4" BBT [e=4")" v - v BBTy
=2 WWr+ Av"We = —v*e"ATBBT [e"‘"']Tu - v*BEBTy
= 2(Re[A*'Wy = —1"e4"BBT [e"'“"’]T v—v*BBTy
Thus

ReA\]=0 = »*BBTy=0 = v"B=0
which contradicts the controllability of (A, B). Thus, all the eigenvalues of (4 — BK') have negative real
parts.




e 4.26

(a) Suppose z = 0 is an isolated equilibrium point. Clearly z = 0 is an equilibrium point. We can show
that it is isolated by contradiction. Suppose it is not isolated. Then there is Z # 0, arbitrarily close to 0,
such that f(2) = 0. Define Z = T~1(2). Then, f(z) = [0T/0z]~ f(Z) = 0; that is, Z is an equilibrium point.
By continuity of T-1(-), we can make # arbitrarily close the origin, which contradict the fact that the origin
is an isolated equilibrium point. Clearly the argument works the other way around. Hence, z = ( is an
isolated equilibrium point if and only if z = 0 is an isolated equilibrium point.

(b) Suppose z = 0 is a stable equilibrium point. Then, given £; > 0 there is 4; > 0 such that

N=@)ll < & = e < &1, V20
By continuity of T'(-): Given g2 > 0 there is r > 0 such that
fzlt <7 = Jjzll < €2
Thus, there exists 6§ > 0 such that
=0} <6 = llz(®)l < r = |iz(t)l| <&z, V20
By continuity of 71(-), there is §; > 0 such that
lell < 8 = lall < &

Hence
1z(0)l] < 82 = ||lz(0)| < & = li=(t)ll <r = [l2(t}]l <&a, VE2>0

Thus, z = 0 is a stable equilibrium point.
Suppose now that z = 0 is an asymptotically stable equilibrium point. Then

z{t) 2 0ast — oo

Given £; > 0 there is T > 0 such that ||z(t)]| < £, for all ¢ > T;. By continuity of T'(-): Given &3 > 0 there

is » > 0 such that
lzlf < r = [iz]| < ez

There exists T3 > 0 such that
ezl <7, Vi> T = |z(t))| <e3, VE> T

Hence
2(t)—»0ast =

and z = 0 is asymptotically stable. The opposite direction of the proof is done similarly. Now

z =0 is stable & z = 0 is stable

is equivalent to
Z =0 is unstable 4 2 = 0 is unstable

» 4.27 (a) The equilibrium points are the roots of the equations
0=-z213+1, O0==z173—22, O=2z3(1-2s)
From the third equation, 3 = 0 or z3 = 1. The first equation cannot be satisfied with zg = 0.

23=1 = 22=1 = r1=2z3=1




Hence, there is a unique equilibrium point at (1,1,1).

(b) .
0 —z3 -3 0 -1 -1
=| xzz -1 I =]1 -1 1
z=(1,1,1) 0 0 25313 |,y 0 0 -1
The eigenvalues are —1 and (~1 = j/3)/2. Hence, the origin is asymptotically stable. The third state

equation has equilibrium at z3 = 0. Starting with the initial condition z3(0) = 0, we have za(¢) = 0. Then,
#; =1 and z;(¢) grows unbounded. Thus, the equilibrium point is not globally asymptotically stable.

of
oz

e 4.28
(a)
O=mz, 0= (::1:52——1)1:§+(3:1mz—1+z§)33
Substitution of z; = 0 in the second equation yields
-.‘rz(l+$§) =0=>z;=0

Hence, the origin is the unique equilibrium point.
(b)

af _ -1 0

Oz |,y | (s3+23+22:20) (4afmy — 3z} + 2z -1+ 2})

Hence, the origin is asymptotically stable.
(c) Let V(z) = z122.

V(z) =Z1d2 + 2y = (2:11:2 - 1):leg + (:‘»"132 -1+ ::-f;)n:;zg —T1Zg

-[7 8]

z=0

V(z) 2=4a:§>0

T1Zo9=
which implies that T is a positively invariant set.
(d) The origin is not globally asymptotically stable since trajectories starting in I' do not converge to the
origin. .
» 4,29 (a) The equilibrium points are the roots of the equations
.0=2:1-I?+22, 0=3z1 — 22
zz=3z = 11(4—-23)=0

The equilibrium points are (0,0), (2,6), and (-2, —6).
(b)

8f [1-3s8 1

8z = 3 -1

1 1
3 -1

of

Oz

The equilibrium point (0, 0) is unstable (saddle).
af

9z

] = M _d=0=3 A=242

2={0,0) - [

_ [ el ] = A2412A+8=0 = A=—11.20 —0.71
3‘—"(2-‘)

The equilibrium point (2, 6) is asymptotically stable (stable node).

_3_f -11 1
Ox 3 -1

z=(—2,=8) B [




The equilibrium point (-2, ~6) is asymptotically stable (stable node).

(c) Let A = [ P ] and P be the solution of PA + ATP = —J. Using Matlab, P is found to be

_ [ 0.0938 01771 . _ oy :
P= [ 01771 06771 |- The eigenvalues of P are Amaz(P) = 0.7266 and Amin(P) = 0.0442. To estimate

the region of attraction of {2,6), shift the equilibrium point to the origin via the change of variables
F1=x1-2, Fop=z—-6
The state equation in the new coordinates is given by
Zy = —113, +3%; - 63 - &
Ty = 3 —-3s
We use V = #7 Pz as a Lyapunov function candidate. The derivative V is given by

1% -3T% — 2pu&1 + praZs)(6 + £1)3

AN

~ 12113 ~ 12(p11Z1 + pr12%2)33 ~ 2012E3 5
< =lElE + 124/0%, + 22,1115 + prallZNS
< —(1-24r-01771r%)|2|3, for ||F|2 <r

Taking r = 0.4, we see that V(Z) is negative in {||Zlj; < r}. Choosing ¢ < Amin(P)r? = 0.00707, ensures
that {V(Z) < c} C l|#}l2 < r because Apin (P)||Z]12 < V(z) Take ¢ = 0.007. Thus, the region of attraction
is estimated by {Z7PZ < 0.007}. The estimate of the region of attraction of (—2, —6) is done similarly and
the constant c is chosen to be 0.007. A less conservative estimate of the region of attraction can be obtained
graphically by plotting the contour of V(Z) = 0 in the z;-z; plane and then choosing ¢ and plotting the
surface V(Z) = c, with increasing c, until we obtain the largest c for which the surface V() = c is inside the
region {V'(£) < 0}. The constant c is determined to be 0.1. The two estimates of the region of attraction
are shown in Figure 4.2.

(d) The phase portrait is shown in Figure 4.3 together with the estimates of the region of attraction obtained
in part (c). The stable trajectories of the saddle form a separatrix that divides the plane into two halves,
with the right half as the region of attraction of (2,6) and the left half the region of attraction of (-2, —6).
Notice that the estimates of the regions of attraction are much smaller that the regions themselves.

» 4.30 (a) The equilibrium points are the roots of the equations
zp = jtan(721/2), 2, = Jtan(nz,/2)
There are three equilibrium points at (—$,-1), (0,0), and (}, ).

(b)
[ -(W/4)Secz(1r=1/2) ]
—(m/4) sec(mz2/2)

[ —(m/2) 1 ] , Eigenvalues are — (x/2)+1

(-4.-4) —(7/2)
6:: (0.0) N [ o —(1:/4) ] , Eigenvalues are — (n/4) £1
-(n/2) 1 _
a’ (4.4) [ ~(x/2) ] ,  Eigenvalues are — (£/2)+1
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Figure 4.2: Exercise 4.29. The dotted line is the
contour of V(£) = 0, the dash-dot line is the contour  Figure 4.3: Exercise 4.29. Phase portrait with esti-
of V(&) = 0.007, and the solid line is the contour of mates of the regions of attraction,

V(z) = 0.1

Thus, the equilibrium points (—4,~1), and (4,1) are asymptotically stable (stable nodes) while the equi-
librium point (0,0) is unstable (saddle).

(¢) Let us start with the equilibrium point (}, ). Define y; = 7, — § and yz = 27 — 1. In the y~coordinates
the system is represented by

y=at o, weea=[ TGP 1, ]

() = -(1/2)tan(1ry1/2+1r/4)+1ry1/2+1/2]
IW = | —(1/2) tan(aya/2 + 7/4) +7ya 2 + 172

The solution of the Lyapunov equation PA+ ATP = —Iis

P=(7r2_1:-4-)'[2}1r 2{‘”]

Using V(y} = y¥ Py as a Lyapunov function candidate, we obtain
V) = —vTy+ 2" Pg(y)

Viy)is negative in some neighborhood of y = 0. Using the “contour” command of matlab, we have plotted
the contour of V(y) = 0 and the contours of V(y) = c for different values of c. We found that the choice
¢ = 0.07 results in a set {V(y) < 0.07} which is a subset of the region where V(y) is negative as well as the
- rectangle {—1 < z; <1}; see Figure 4.4. Similarly, the region of attraction of (—3,—3) is estimated by the
same Lyapunov surface V (y) = 0.07, except for the fact that now yy =2 + § and yo = 22 + 3.

(d) The phase portrait and the estimates of the regions of attraction are shown in Figure 4.5. The ex-
act regions of attraction are the two halves of the plane separated by the separatrix formed of the stable

trajectories of the saddle equilibrium point.

s 431
8f | ~-1+z = -1t 0 _
(1) -a; 0 = [ o -1 om0 = 0 -1 | )‘1,2 =-1,-1
of _ | —1+3z}+23 -1+2n2; _ -1 -1 .
(2) 8—3 =0 - [ 14277, -1+ 1? + 333 £=b = 1 =10 )‘1,2 ==1%j
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Figure 4.4: Exercise 4.30. The dotted line is the

contour of V(y) = 0 and the solid fine is the contour Figure 4.5: Exercise 4.30. Phase portrait with esti-

mates of the regions of attraction.

of V(y) = 0.07.
of| . -2 1- 2} (o 1 B _
of -1 =1 -1 21 ~ '
(4) - Bz sm0 [ 2 322 L=u— [ 2 0 ] , Ang = (-1x5v7)/2

e 4.32 We investigate stability of the origin using linearization.
(1)
af -1+42%, O 0 af -1 0 0
-8—1 = (i} =1 223 |}, A= E = 0 =10
-2z, 0 i =0 0 0 1

A has an eigenvalue at 1; hence, the origin is unstable.
(2) Near the origin, sat(y) = y which implies that

24 —2z3 — sat(y) = 2z; + 5z2 —4z3

01 0
=10 0 -1
z=0 2 5 -4

The eigenvalues of A are —1, —1, —2; hence, the origin is asymptotically stable.

(3) a2
-2+3zf ¢ O
%f = o  -10], a=%
z 0 0 -1 Oz

0 1 1]
y— = | 22+4%,2 10232 —8zZ3z—cO823 |, A= ﬂ
bz 2 5 -4 Oz

The eigenvalues of A are —2, —1, —1; hence, the origin is asymptotically stable.
(4)
-1 0 0 -1 0 o0
9 | c1-zs -1 -1-m |, A= 2|0 a4
z=0 0 1 0

z2 141 0 0z
The eigenvalues of A4 are —1, —1 & j1./3; hence, the origin is asymptotically stable.




* 4.38 Since f(z) is twice continuously differentiable, we can represent it in some neighborhood of the origin
by f(z) = —Bz + g{(z), where |lg(z}]]z < kllzl|3. The fact that the surface {V{zx) = ¢} will be closed for
sufficiently small ¢ follows from continuity of V'(z).

‘;_:. flz) = g—:[—Bx +9(x)] = —zT(PB + BTP)z + 2T Py(z) = «7z + 227 Py(z)

Using
1227 Pg(z)|l2 < 2k||P|l2)l=l3

we obtain oV 1
— 2 _ 3~ L2 _—
/) 2 el = 2HPIalizl} 2 Jlel for lell < g
Choosing ¢ small enough so that the closed surface {V(z) = ¢} is contained in the ball {|}z||s < 1/(4%||P|}2}},
we see that [§V/8z]f(z) > Ofor all z € {V(z) = c}.

¢ 4.34 Proof of Lemma 4.2.

e Since a;(-) is continuous and strictly increasing on [0, a), for each given y € [0, ar; (a)) there is a unigue
z such that &, (z) = y. Define 2 = a~!(y). The function a~1() is continuous, vanishes at the origin,
and is strictly increasing. Hence, a~1(-) is a class X function.

¢ From the previous it, a3() is a class K function. Moreover, since as(-) is a class K ﬁmdion,
a3 !(-) is defined on [0, 0} and a3 (r) — co as r = co. Hence a3 (-} is a class Ko, function.

s Let a(r) = ay(az(r)). Then
a(0)=0; a(r)>0, forr>0

Tz > 11 = agre) > az(n) = o (az(r2)) > ay(az(r1))
Therefore o(:). is strictly increasing. It is also continuous. Hence, it is a class X function.

¢ From the previous item, a(r) = as(as(r)) is a class K function. Moreover, it is defined for all r > 0

and
T = 00 => a4(r) = 00 = a(r) = oo

Hence, a3 (ay(+)) is a class K, function.

» For each fixed s, B(az(r),s) is a class K function of r. Thus ey{B(az(r),s)) is a class K function of
r. Now, for each fixed r, B(aa(r),s) decreases as s increases. Hence, o (8(az(r), 8)) decreases as s
increases. Moreover, a1(f(az(r),s)) — 0 as ¢ = co. Hence, a;y(8(az(r),s)) is a class KL function.

¢ 4,85 If ry > r2, we have r; + 2 < 2r;. Hence,

afry +r12) < a(2r1) < a(2r) + a(2r2)
If r; > 1y, we have r; + ra < 2r2. Hence,

a(ry +r2) < a2rz) < a(2r1) + af2ry)

Thus, the inequality
a(r; +rz) < a(2r) + a(2rz)

is always satisfied.

¢ 4.36 This exercise is already dealt with in Example 4.18.




* 4.37 (1) Let V(z) = 1(z} + zd).

-3 + a(t) 7123 + oft) 2179 — 22% < —2? — 202 + 2| |z
T

_ | =] 1 -1 |2z 2, .2

= [ il I PRl i B PR E™ 1o

where 0.382 is the minimum eigenvalue of the 2 x 2 matrix. By Theorem 4.10, the origin is exponentially

stable.
(2) Let V(z) = (23 + £3).

14

V =~z +a(t)n1zy — a()z122 ~ 2z} = ~z% — 222

By Theorem 4.10, the origin is exponentially stable.
(8) Take V(z) = p11 73 + 2p122132 + P32}, where pry1pzs — pfy > 0, and let k be an upper bound on fa(t)|.

'V = —2p1a2} + 2[pyy ~ pa2 — a(t)pa]er 2z + 2[p12 — a(t)pz)z?

Ta.kepu=pgg=p>la.ndplg=1.

T
" & Om? _ 12 — _ |z 2 ~k |1}
V < =221 + 2k|zy| |z2| - 2(2p - 1)z} = [ iza ] [ -k 2(2p-1) ] Iz

Choose p > (1 + k%/4)/2 so that 4(2p ~ 1) — k> > 0. Then, the 2 x 2 matrix is positive definite and, by
Theorem 4.10, the origin is exponentially stable.
(4) Take V{z) = p1127 + 2p1271T2 + p2213, where P11P22 — p3; > 0, and let k be an upper bound on |a(t)|.

V =-2[py - o(t)prale? + 2[—p12 + a(t)pys — 2p12)z122 — dppyzl
Ta.kepm=0andpn=1.

T
V < ~2pya? + 2Kjms| fea] 423 = — [ Jz| ] [ 2~k ] [ iz
< leal | L <k 4 ]| ol

Choose pr1 > k?/8 s0 that 8p1; — k% > 0. Then, the 2 x 2 matrix is positive.definite and, by Theorem 4.10,
the origin is exponentiafly stable.

» 4,38
{a) Using the bounds on L(t), C(t) and R(t), we can show that
2 2L(t) 2k,
bt tok STO Fmcm SR Rk
2 2 2
WEED S

Using the upper bounds, it is clear that V'(¢,z) is decrescent. If we try to use the lower bounds to show that
V(t,z) is positive definite, we will have to restrict the constants to satisfy

ks 4k
T _—kg e 1>0
Instead of making this restriction, we work directly with V(¢,z), which can be written as
zzﬂ
V(t,z) =2T Pz = 27 R+ miyee i z>a’ [ -R{t) 3 ] 2+ Y TPy
! 0} 0]




It can be shown that the minimum eigenvalue of P is given by
/\min(P) = %(G - a? ~ 4)

where 5
a=R+ E

It can be easily seen that there are positive constants ¢; and ¢z such that a® ~ 4 > ¢; and Apin(P(1)) > c2,
for all ¢ > 0, which shows that V(¢, z} is positive definite.

(b)
Vit,a) = C[“R(Rﬁ 2)'30 R]" L(l' R’)"”

Suppose L, C, and R satisfy

(L C LC L
“R("ﬁ?“z')*iﬁ’ﬁz"‘

1+ % > ?2
for all t > 0, for some positive constants ¢; and ;. Then

g 2C1 2 2c2 o
V )N — ——gE — —Z
(t! ) - k3 1 k]_ 2

Hence, V (¢, z) is negative definite. This shows that the origin is uniformly asymptotically stable. By linearity,
it is exponentially-stable. Alternatively, we can conclude that the origin is exponentially stable by noting
that V (i, z) satisfies the conditions of Theorem 4.10.

» 4.39
(a) Since g(t) > a > g, '
l4ag{t)-a®*>1+aa~a?>1

Hence
V(t,z) > Hasinz + z2) + 1 — coszy

which shows that V is positive definite in the region |x;| < 2. Since g(t) < 8,
V(t,z) < $(asinzy + 22)* + (1 + af + a®})|1 — coszy |
which ahows that V(t, z) is decrescent.
(b)
—[g(t) =~ acosz1}z3 — asin® zy — a*(1 — cosxy)ze sinz; + ag(t){(1 - cosz;)

—({a — a)z} + ay(1 - cosz,) — asin® z; + Of)jz||®)
~(a —a)z3 — a(2 - v)(1 - cos 21) + a[2(1 - cosz;) ~ sin’® z,] + O()|=||®)

14

i IA i

The term [2(1 = cosz;) - sin® z,] is O()x; |*). Hence
V < —(a - o)z} — a(2 ~ v}(1 ~ cosz1) + O(llzl1®)

(¢) The preceding inequality shows that Vis negative definite, since near the origin the negative definite
quadratic term dominates the cubic order term. Thus, the origin is uniformly asymptotically stable.




e 4.40
(a)

exp(Bt + BT)®(0,t+ T)
= exp(Bt) exp(BT)3(0,T)&(T,t +T) = exp(Bt)®(T,t +T)

P(t+T)

since €(0,T) = [&(T,0)]~ = [exp(BT)]!.
A +T) = Alt) = §(T,t +T) = 8(0,1) = P(t + T) = exp(BHS(0, £) = P(t)

(b)
P~i(t)expl(t — T)BIP(r) = &(t,0)exp(~Bt)exp(Bt ~ Br)exp(Br)®(0,7)
o(1,002(0,7) = &(t,7)

(¢) P(t) and P~*(t) are continuous functions of ¢. Hence, they are bounded on [0,7]. Since they are
periodic, they are bounded for all £ > 0. Let ||P(¢)}| < k; and ||[P-1(¢)]| < k2. Then

|2t )| < E1ky|| expl(t — 7)B|
and

[l expl(t — 7) Bl| < kykall® (¢, 7))
Hence, {|®(t,7)|] is bounded by ke~*(*~"} if and only is B is Hurwitz.

o 4.41
(a)

Za=1=%
20120 +3t+2 -3 - 20+ )22 =2t + 34 +2-3t~2(t+ 1) =0= 2,

Thus, z(t) = : is a solution.

(b) Recall from the discussion at the beginning of Section 4.5 that to show asymptotic stability of a solution
we shift it to the origin and then show asymptotic stability of the origin. Let z; = z; —t and zy = z, - 1.
Then '

21 = 23, 22 = 22113 -2 - 22.'2

We need to show that the origin z = 0 is uniformiy asymptotically stable.

e[t ab ) 4 HL 8 3]

8z | —1+42z% -2+2z = 3z

The matrix 4 is Hurwitz; hence, the origin is uniformly asymptotically stable.

* 4.42 Let V(z) = 27z
V=zlt=—a[zTz+ 27 8(z)z + (zT:c)’] =-a(1+z72)zTz < —a 2Tz
where we used the property z7.8(z)z = 0. By Theorem 4.10, the origin is globally exponentially stable.

® 4.43 The closed-loop system is ¢ = f(z) — 0G(z)G7 (z)Pz. Use V(z) = 2T Pr as a Lyapunov function
candidate.

V =2z"Pi = 257 Pf(z) - 2027 PG(z)G7 (z)Pz < —vzT Pz — W(z) < ~vV (z)

By Theorem 4.10, the origin is globally exponentially stable.




o 4.44 Let Vi(z) = L(z} + z3).
1%

-2 4 2129 4 21 (23 + 22) sint — 2,70 — 23 + T2(2? + 22) cost
—(z} + 2%) + (2% + 23)(z1 sint + z; cost)

=llzll3 + /3 v/(sin )2 + {cos 1)? = (1=} + ||=ll3
—(1=r)=zll, Vizllz <7, foranyr<1

IA 1A

Hence, by Theorem 4.10, the origin is exponentially stable. Since V(z) = %||z||3, the region of attraction
can be estimated by the set {|{z|] < r} for any r < 1.

» 4.45 (a) Use V(z) = 3(z] + z}) as a Lyapunov function candidate.
V = mifh(t)sa - g(t)zi] + zal~h(t)z ~ g(t)z3] = —g(2)(=1 + 23) < —k(z} +z3)

Hence, the origin is uniformly asymptotically stable. Since all assumptions hold globally and V(z) is radially
unbounded, the origin is globally uniformly asymptotically stable, which answers part (c).
(b) The conditions of Theorem 4.10 are not satisfied. Let us linearize the system

_of _ 0 A2)
A(t) = Ez'(t! 0) = [ —h(t) 0 ]

Use V(z) = 3(z? + z3) as a Lyapunov function candidate for the linear system.
V=umx h(t)zs — zah(t)zy =

This shows that solutions starting on the surface V(z) = c remain on that surface for all ¢. Hence, the origin
of the linear system is not exponentially stable. This implies that the ongm of the nonlinear system is not
exponentially stable.

(d) No.

* 4.46 Linearization at the origin yields the matrix

afl  _[-1+32zi+2i -1+2x2; -1
oz, o 142223 -1+ 2%+ 323 11 -

whose eigenvalues are —1 * 7. Hence, the matrix is Hurwitz and the origin is exponentially stable. Conse-
quently, it is asymptotically stable.

e 4.47 Let V(z) = (b2} + ax3).
V = —bg(t)(z1 — 632)* — acyp(t)zs < ~bo(z1 — az2)? - acors ¥ Wiz )

It can be verified that Ws(z) is positive definite for all z. Hence, by Theorem 4.9, the origin is globally
uniformly asymptotically stable. Linearization at the origin yields the linear system

1 = -¢(t)n +ad(thyr, ¥z = bd(thn — abd(t)y

HEtHIH
51 =0, Zg=¢(t)zr — P(t)(1 +ab)z

which has the solution z(¢) = constant. This shows that the linear system is not exponentially stable.
Therefore, the origin of the nonlinear system is not exponentially stable.

The invertible change of variables

results in the system




¢ 4.48 Let Ay = $£(0) be the linearization of £ = f(z). To find the linearization of & = h(z)f(z), set

9(z) = h{z)f(z). Then

bg; . . 8f Ok
Bz, = h(ﬂ-‘)a?:;; + a;fi(f)
Hence
5o = gL o+ 2040 = k0 Fko
Hence

_% . _
Az = s (0) = h(0) A
Since h(0) > 0, A; is Hurwitz if and only if A, is Hurwitz. By Theorem 4.15,
% = f(z) is exp. stable & A, is Hurwitz < A, is Hurwitz <« & = A(z)f(z) is exp. stable
¢ 4.49 Equilibrium points:

0 = -af)1+b = % =b/a
0 = —ck+Z1(a ~ fE133)

Substituting #; = b/a in the second equation, we obtain

_ abja
1= T B(bja)

Thus the system has a unitiue equilibrium point .at (%, %;). Let
nN=zn-%&, p=1-%
It can be verified that
n=-an, =-[c+B0n+2:1)m +yna- B2l - 2822y

1 ¥ 1
V= 5v?+§y§+;v?, ¥>0
V = —ayf -lc+ B8 +2)%8 +va- Zﬁixiz)yzyz — ByvEyiys — ayt
< —ayf ~veyd + veuln) lyal + veun? il —apd, 1> 0, 2> 0
T
2 _ 7€ 2 4,[!#:]] [Iyl J_[IMF] [fﬂllz]
-gi- g | @l ol | 92| il
whezje

_ af2 —ve /2 _| 3a/4 —vcaf2
Q‘"[—7c1/2 'yc/l4 ]’ Q2= —702/2 73/24 ]

Choosing v < min{ac/2c, 3ac/4c3} ensures that ¢ and Q2 are positive definite. Then

. a e a
V < - Ey?--g-yg—zyf
. 1 ¥ 1
< -min{e,c} (Eyf + o+ ny)

= =—apV, ay =min{a,c}

which shows that the origin is globally exponentially stable,




‘(.a‘;.ssli)nce the origin of the linearization is exponentially stable, by Theorem 4.13, the origin is exponentially
stable._ Therefore, there exist positive constants k;, -, and ¢y such that
izl < et lz(t)ll, ¥ flz(to)ll < e
Suppose that ¢; < ||z(to)|| < c. Then
izl < B(lz(to)ll, t — to)
Since B(:,t) is a decreasing function of ¢, there is T > ( such that 8(c,T — #) = ¢;. Thus
Blfx(to)ll.t —te), forte <t<T
lzIl < {
|2(T)Ikre=7¢=T), fort>T
which implies that
=@l < B(llz(to)ll, 0}k, T e="0=0), ¥ ¢ > 19, ¥ 1 < |Jz(to)ll < ¢
Notice that the foregoing inequality is also valid for ||z(to)]| < c1 since A{||z(to)|l,0) > 1. Define
a(r) = ke T g(r, 0)
Clearly, a(') is a class X function and
liz®l < aliz(zo)ll}e™ "¢, V&2 to, ¥ ||z(to)li < c
(b) Let M, = maxe, <rgc{a(r}}. Then,

a(r M;
) M vacrsge
7 (5]

For [jz(to)li £ c1, we have
=)l < Fallz(o)lle~7¢)

For ¢; < ||lz(t0)]l < ¢, we have
(0l < alletta)lDe™4) < T fa(to)e=4
Taking M = max{ki, Mi/ec;}, we obtain
Il < Mjz(to)lle™“*), Vit 210, ¥ liz(to)ll < €
(¢} The answer is no, because the constant M; of part (b) depends on ¢ and c¢ould approach oo as ¢ —+ o0.

+ 4.51 Using the inequalities
killell® SV < kalfe]® and V< ~ks||<l|®, V) =p>0

we see that as long as V' 2> kau®, we have ||z|| > u and

V- :—:V > V(t,2(2)) < emUs/b)t~)V (1 2(2))




Hence,
1/a

1/a
lz@®) < (Lt;:@) < (.’.c_ll_e—(k;/h)(t-to)v(to,z(to)))

IA

1 "
( z_e_(k,/tz)(t-*o)kgllz(to)”")
1

1/a
(‘EE) e~ /o)~ iz(t)]] = ke~ "=l (tg))
2

The foregoing inequality will hold over the interval [to, to + T] during which V' > kzu®. For t > to + T, we
have
V(t,z(t 1l/a ay l/a
heto < (ZE2) 7 < ()
k k

® 4.52 Let ¢ = maxw,(z)<u V(2). The assumption € < ¢ ensures that {Wy(2) < g} is in the interior of
{V(z) < ¢}. Hence, V is negative on the boundary {V(z) = c} and the set {V (z) < c} is positively invariant.
Let A = {e < V(z) < ¢}. As argued on page 170 of the text, we can show that there is a finite T > 0 such
that for 4 <t < tp+ T, z(¢) will be in A, while for £ > t9+ T, it will be in {V(z) < ¢}. Hence, in fto. to+ T,
z(t} satisfies inequality (4.42). For ¢ > ¢ + T, z(t) € {V(z) < £}. Since positive definite functions are
bounded from below and above by class K functions (Lemma 4.3), any z in {V(z) < £} can be bounded by
a class K function of u. In general, the function will not be oy (az(s)) as in (4.43).

* 4.53 The proof is exactly the same as that of Theorem 4.18. Notice that the argument used in the proof
of Theorem 4.18 holds outside a ball that contains the origin.

¢ 4.54 (1) The system is not input-to-state stable since with u{t) = ¢ > 1 and (0} > 0, z(t) = oo a8
t - oo. .

(2) Let V(z) = {a°.

/= —zt ruzt —2% < -2t Viz|> V&

By Theorem 4.19, the system is input-to-state stable. '

(8) The system is not input-to-state stable since with u(t) = 1 and 2(0) > 0, z(t) = oo as t = oo.
(4) With u = 0, the origin of £ = z - 2” is unstable. Hence, the system is not input-to-state stable.
* 4.55 (1) Take V = (2} + 23).

Vo= —(@f+23)+2u < —|lzll} + ilzllzlul

= (1= 8)l|zl)3 - Olizlfz + lzllabuf < (1 - &)\li3, ¥ llzlie 2 ful/8

where 0 < & < 1. Hence, the system is input-to-state stable.
(2) Take V = (1/4)z} + (1/2)x3.
V=—2{ -2} +3u= -z ~ (1-8)z3 - 23 + z3u < ~z! — (1= 0)zl, for |za] > lu| /8

where 0 < & < 1. When |z2| < |u|/8, we have

V<-(1-6)af -0zt ~z2+u/8<~(1- 6)zt — 22, for |z1| > /]u|/6




Thus, V < —(1 — 8)[z] + 23] for all ||2]lec = p(Ju|), where p(r) = max {r/&, \/r/B}. Hence, the system is

input-to-state stable.
(8) Take V = z? + 27122 + 223 + 2f.

V = 228 — 222 4 22,u + dzqu < —22% — 222 4 2|z | Ju) + 4)z2]| |u)

We have
d|z2| [u| = 2|za| |2u] < |22 + 12uf?

Using Young’s inequality, we have

2| ful = |2 | 20 < [z + (2

Thus .
V < -z} — 25 + ()" + 4juf
Define the class K function ¢(r) = (2r)%/3 + 4r%. Then,
V < -2 -z} + 4(ju))

Since z? + 73 is positive definite and radially unbounded, by Lemma 4.3, there exists a class K function
ag such that

V < —as(fall) + ¥(lul) = —(1 - Oas(llall) — fas(llzll) + $(jul) < —(1 - Oas(lial), ¥ |zl > o3 (—ML“ D)

where 0 < 8 < 1. It follows from Theorem 4.19 that the system is input-to-state stable.
(4) With u =0, the system

I = (21 —32)(2@ -1), Z={(z1+ -"32)(-"-':1! -1}

has an equilibrium set {22 = 1}. Hence, the origin is not globally asymptotically stable. It follows that the
system is not input-to-state stable.

(5) The unforced system (with u = 0) has equilibrium points at (0,0), (1,1) and (—1,—1). Hence, the
origin is not globally asymptotically stable. Consequently, the system is not input-to-state stable.

(6) Let V(z) = }at +2}). -

vV = -zf —T1Z2 + 21U + 172 — zg + Touy

—2% - .."J; + Z1U]1 + a2z

< ~(1-8)zk = (1= 6)zt — 83 — 628 + {1 llufloo + 122! flulless 0< B <1
1/3
< —(1-8)22 - (1-8)ab, for |m| > % and [za] > (uugm)

For |z3] < (lltlles/8)"/3, we have

(Jhulloo)*/®

oo 4/3
=~ - 02 —af - 2] + ] o + ()

Let p;(r) be the largest positive real root of the polynomial equation

4/3

_9y2+ry+-g-]-/-§=0, r>0




It can be seen that py(r) is a class Ko function of r and p1(r) > r/6. Hence, for |za| < (|lulje/8)'/3, we
have
V<-(1-6)z} -3}, forz:] 2 pi(llulle)
For |z3| < [[ullec/@, we have
. 2
Vs —al-ah Bl ) g,

- _e2_f1_ 4 _ .4 ”""go
= —zj —(1—8)z5 - 025 + |za| "U"co+T

Let p2(r) be the largest positive real root of the polynomial equation
o2
b

It can be seen that pa(r) is a class K function of r and py(r) > (r/6)}/2. Hence, for jz1| < ||ulleo/6, we
have

-yt +ry+—=0, r>0

V<-22—-(1~8)i, for |z2] > pa(liteibeo)
Define p(r) = max{p(r), p2(r)}. Then, p(r} is a class Ko function of r and
V<-(1-8)zi-(1-60)z3, Yzl > plliulles)
From Theorem 4.19, we conclude that the system is input-to-state stable.
(7) Let V(z) = 323 + f;" o(y) dy + 323.
14 [#1 + o(z1){ (=21 + 22) + 23[~21 —0(z1) — 73 + y]
= -z - z10(21) = 23 + zau < —llz|} + llzllzlu} € -2 - O)lizlle, ¥ [lzlla > |u|/8

where (0 < 8 < 1. From Theorem 4.19, we conclude that the system is input-to-state stable.

* 4.56 The system 2, = —zj + &2, with z; as input, is input-to-state stabie. The system 2 = —zJ has an
asymptotically stable equilibrium point at the crigin. It follows from Lemma 4.7 that the origin of the full
system is globally asymptotically stable.

e 4.87 ¥(u) < J#(u)|, where |y(u)| is continuous and positive definite. It follows from Lemma 4.3 that
there is a class K funciion ¢ such that |s(u)] < ¢(ljul]). Hence

V < =(1-Oas(lel) — Bos(lel) + 4(lul), 0<0<1
< —-Oallal), ¥ el 2 o5* (XeD)

Now we can apply Theorem 4.19 to conclude that the system is input-to-state stable.

* 4.58 Given ¢ > 0, find £; > 0 such that y(e;) < £/2. Since lim;_,o0 u(£) = 0, given &; thereis T} > 0 such
that [ju(t)|| < & for all £ > T}. Take tg > T}. For ¢ > iy, we have

iz (&)l < B(Ilz(to)l], t — o) + y(e1) < Ble,t ~ to) +€/2

for some ¢ > 0, where we used the fact that #(¢) is bounded. Since S(c,t —1%y) = 0 ast — oo, thereis T, > 0
such that B{c,t — tg} < £/2 for all ¢ > T;. Thus,

()l <&, Vt>T=max{T;,T>}

which shows that limy—e 2{2) = 0.




¢ 4.59 It follows from Exercise 4.58, but an indepenent solution is given next. Let V(z) = 1z%.
V=gl 4rie?

Starting from any time iy, we have e~ < e7% for all ¢t > #5. Hence
. e—tu 1/3
Ve-af+zffe™™ < -1-8)28 V]z[> (—0-—)

where 0 < 8 < 1. It follows from Theorem 4.18 that there is a finite time #; > ¢4 such that

-ty 1/3
sl < () vezn

Given 0 < € < 1, take tp = In(1/6¢3). Then there exists a finite time T such that |[z{t}|| < e for all £ > 7.
This shows that z(t) converges to zero as ¢ tends to infinity.

» 4.60 Applying the non-global version of Theorem 4.18 shows that for any z(tg) and any input u(t) such

that
flz(to)ll < a5 (@ {r)), p(f;lg ()]} < min{az(a1(r)), p(ru))

the solution x(t) exists and satisfies
Nt} < Blllzto)ll t — to) +7 (rsg}: uu(-r)u) L Vizd

Since the solution z(t) depends only on u(r) for { < 7 < ¢, the supremum on the right-hand side can be
taken over [to, 2], which yields (4.47). :

» 4.61

(a) Asymptotic stability can be shown by linearization which yields the Hurwitz matirix [8f/0z)(0) = —1I.
Global asymptotic stability can be shown as follows. First we note that there is no finite escape time because
£ (=}l £ k|=||; see Exercise 3.6. We have z2(t) = e™*z2(0). ‘Therefore, there exists a finite time T > 0 such

that .
[sm(%"—’)] <f<l, Vit>T

Consequently
ni < —{(1-/z%, Yt>T = z(t) = 0ast—=

(b} The linear system Z; = —z; + u is input-to-state stable. Hence, for any bounded u(t), zz(t) is bounded.

z1(t) = 2:1(0) +/:x1(-r) [(sin E%(L))z — 1] dr

i
1 ()] < Joa (0)] + / |1 (7)] dr

By Gronwall-Bellman inequality
[21(2)] £ |z21(0)(e*

Let T be as defined in part (a).
21ty S —(1-B)2}, VI2T = |2 < [m (D), V2T = za(t) < |21(0))e™, VE2 0




which shows that z,(t} is bounded.

(e) With u(2) =1 and z2(0) = 1, we have z2(t) = 1. Then
T =1z [(sin %)2 - 1] =0 = n{t)=x10)=a

(d) Suppose the system is input-to-state stable, then there exist a class KL function £ and a class X function
+ such that

e < Ala(O, ) + 7 (sup ] ), 20
Applying this inequality to the solution of part (c), we obtain
lz(@)l < B(ll=(0)I. £} ++(1), VE = 0
Since 5(||z(0)|],t) tends to zero as ¢ tends to infinity, there exists a finite time T) such that
llz(EHl < 2v(1), VE2 Ty

But [|z(t)l|z = v/a + 1 can be made arbitrarily large by choosing & large enough. This is a contradiction.
hence, the system is not input-to-state stable,

» 4.62 The equilibrium point z =0 of z(k +1) = f(z(k)) is
« stable, if for each ¢ > 0, there is § > 0 such that
lz(0)f < & = lz(k)ll <&, YE>0

e unstable, if not stable.
o asymptotically stable, if stable and 4 can be chosen such that
. Jlz(0)]| < § = lm z(k) =
k—oo

e 4.63 The proof proceeds exactly as in the proofs of Theorems 4.1 and 4.2.

o 4.84 Since AV < —cslizlf? < —(cs/ea)V, Vi & V (z(k)) satisfies the mequa.hty Vita — —(cs/ea)Vi.

By applying this inequality recursively, it can be shown that Vp < ( 1- z) . It can be seen that the
constant {c3/c;) < 1, for if this was not the case V; would go negative which is impossible. Therefore,

(1- )<1 Now

(k) < (V"f")’)m_ E (1- g—:)kCzllz(O)IF} " ("—j)’ (u%)k "l

1/e 1/e
Seto=(2)" andy= (- -a) to obtain [|z(k)|| < allz(0)l}y*, where @ > 1 and 0 < v < 1. The
origin will be globally exponentially stable if the inequalities satisfied by V' and AV hold globally.

¢ 4.65 The proof proceeds as in the proof of LaSalle’s theorem (Theorem 4.4).




» 4.66
(8) = (1) Consider the Lyapunov function candidate V(z) = zTPz. Then

AV(z) =27 (ATPA~ P)z=-2TQz <0, Vz #0

Hence, the origin is asymptotically stable.
(1) & (2) The solution of the state equation is

z(k) = A*z(0) = M T M ~1z(0)

where ’

J = block diag[h, Ja, .. ., In]

is the Jordan form of A. If J; = A, then '
JE=2Fa0, ko0 e N <1

If J; = M + N, where N is a Nilpotent matrix, then

k
Jf.—.().,-1+N)'==Z( f ),\:.'N""—m, as k= o0 <= [Ai| <1
i=0 .

Thus
z(k) = A*z(0) = MJ*M~*2(0) =+ 0, as k — o0 <= A < 1

for all eigenvalues of A.
(2) = (3) Let :
P=Y (497 Q4"
k=0
From (2), [J4]l € C+*, for 0 < ¥ < 1 and C > 0. Therefore
o0 o0
02
1Pl < 3 Iailal* < 3 heicrr < 1=
k=0 =0
Hence, the infinite summation exists. On the other hand
- -]
Vig)=2TPz=2TQz+= LZ (A")T Q (A")] x>z Qz
=1

Hence, P is positive definite. Now

ATPA—-P = i(AH'I)TQ(AH'I)—i(Ak)TQ(Ak)
k=0 k=0
= i(A')TQ(A')-i(A*)"Q(A") =Q

r=] k=0

» 4.67 Suppose the eigenvalues of A have magnitudes less than one, and let P be the solution of ATPA-P =
-Q, where @ = Q7 > 0. It follows from the previous exercise that P = PT > 0. Take V(z) = z7Pz asa
Lyapunov function candidate.

AV(z)

V(f(x)) -V(z) = fT(z)Pf(z) — 2T Px
[Az + g(z)]T P[Az + g(z)] - zT Pz
= —z7Qz + 2¢7 (z)PAz + 97 () Pg(z)

]




Given v > 0, there is r > 0 such that ||g(z)|l2 < v)iz||2 for all ||z|lz < r. Hence,
AV (z) < =Amin(@)l=113 + 2P Al:lIzl + 21 Pllaliz|i?

Choose v small enough that
1
27||PAY)z + v*|IPl2 < 3Amin(Q)

Then 1
AV(2) € ~ 3 Amin(@l=l

which shows that the origin is asymptotically stable.

¢ 4.68 Let ¢(k, ) be the solution of 2(k + 1) = f(z(k)) that starts at z at time k = 0. Let

N-1
V@)= Y 67 (k, 2)o(k.5)

k=0

Then
N-1
Vz)=2Tz+ Y ¢T(k,2)p(k,z) > 72

k=1

On the other hand

N=1
1- N
V) < 3 Ol < O () g

Thus, the first inequality is satisfied with ¢; = 1 and ¢ = C3(1 — v2¥) /(1 — 42).

) ' N-1 N-L ‘
AV(z) = V(@) -V(@) = 3 ¢"(k+1,2)8k+1,2)~ 3 67 (k,2)o(k,z)
k=0 k=0 .
N N=1
= 2 ¢TG.D0,2) - 3 67 (k,2)e(k,z) = 9T(N,z)$(N,2) - 27z
F=1 k=0 .
< Ozl = ell} = —(1— C%*¥)|ja2
where we have used the fact that

¢(k, f(2)) = ¢(k, 8(1,2)) = ¢(k + 1,z)

Choose N large enough to ensure that 1 — C?y*N > 0. Thus, the second inequality is satisfied with
¢z = 1~ C?*9?¥ > 0. Finally, from the continuous differentiability of f(z) we know that f(z) is Lipschitz
over the bounded domain D. Let L be a Lipschitz constant such that

f (=) - Iz < Lijz - yllz

Then
lo(k +1,2) — é(k + 1,9)ll2 = || F (¢(k, 2)) ~ F(d(k. 9))ll2 < Lijé(k, 2) — d(k, ¥}l

and by induction we obtain
Nk, ) ~ {k, 1)l < L¥)|z — yll




Consider
N-1

Viz) -Vl = |Y [¢7(k2)d(k,2) — 67 (k,y)o(k, y)]
k=0
N-1
= |3 {#7(k,2) [¢(k, 2} — o(k,p)] + 67 (k,y) [$(k, =) — (k. )]}
k=0
N-1
S 2 [ "¢(k’ I)!|2||¢(k, I) - ¢(ks 1’)"2 + ”‘;b(k! y)"2"¢(ks 27) - ¢(k1 y)”Z ]
k=0
N-=1
< 3Lk, 2z + llg(k, )iz 1 LEfle ~ ylla
k=0
N=1 N=1
< 3 (CrMliall + Cv*llyllz) Lz — ylle < ( 3 c-y*L*) (l=ll2 + Iylla) i — wilz
k=0 k=0

Thus the last inequality is satisfied with ¢4 = (22':-01 C'y"L").







Chapter 5

e 5.1 Let (uy,3) and (u2,y2) be the input-output pairs of the two systems. We have u = u;, y = ¥,

ug =1, and .
llgrll < @i (Jluirlie) + B, i=1,2

Then

oz (ln-lle) + B2
az (o1 (Turll) + Br) + B2
az (201 (jluirllz)) + @2(26:) + 52

where we have used Exercise 4.35. Set a = a2 © 20 and § = a2(26;) + Bz, to obtain
llw-ll < ellu-fle)+ B8
To show finite-gain £ stability, start from
Nvirllz < villuirll, + 85, §=1,2

Nyz- i

IA A A

In this case
Marlle € v2ln s + 811+ B2 £ v luarll o + 1281 + B2
Set v = 1172 and 8 = 72/ + B2, to obtain
. lly-llz € ¥lurli, + 8

e 5.2 Let (u;,) and (uz,y2) be the input-output pairs of the two systems. We have u; = u; = u,

¥ =11+ y2, and
llﬂif”; S o (”"ﬁ'“;) + ﬂi! i= 132

‘Then
llyrll, < lineliz + lly2-ll, < 01 (lluslly) + 51 + a2 (Jlu-l) + 52

Set a = a; + ag and 8 = 51 + S, to obtain
ly-lle < a(llurle) + 8
To show finite-gain £ stability, start from
lwirlly < villwirlly + Bi, i=1,2

In this case
"?J-r"; <m ""r"c +6+m "urﬂc + 52

Set vy =1 + 72 and § = 51 + Sz, to obtain
“yru.c <% "ur"; +A




« 5.3
(a) Let a(r) = r'/3; a is a class K, function. We have

1/3

Iy < [ul'? = lly=Mc, < ("“r”c_,) = “yf”c,, <ea ("“'r”c,.)

Hence, the system is £, stable with zero bias.

(b) The two curves Jy| = lu|'/® and |y| = alu| intersect at the point ju| = (1/a)*/2. Therefore, for
|lu| < (1/a)*/? we have ly| < (1/a)'/2, while for |u| > (1/a)3/2 we have [y| < alu|. Thus,

Iyl < alul +(1/a)'/%, ¥ |u|>0
Setting 7 = @ and 8 = (1/8)'/2, we obtain
lyrllz, < Yllurlle +8

(¢) To show finite-gain stability, we must use nonzero bias. This example shows that a nonzero bias term
may be used to achieve finite-gain stability in situations where it is not possible to have finite-gain stability
with zero bias.

e 54
(1) h(0) =0 = )h(u)| < Lju|, ¥ u. For p = 0o, we have

sup |y(¢)| < Leup [u(t)|
>0 >0
which shows that the system is finite-gain L stable with zero bias. For p € [1,00), we have

| wer e < [ mer & =y, < L,

Hence, for each p € [1, 00}, the system is finite-gain £,, stable with zero bias.
(2) Let (h(0)) =k > 0. Then, |h{u)| < Lju] + k. For p = cc, we have

sup |y(t)| < Lsup [u(t)| + k¥

>0 t20
which shows that the system is finite-gain £, stable. For p € [1,c0), the integral fJ(L|u(t)|+k)® dt diverges
as T — co. The system is not £, stable for p € [1,00), as it can be seen by taking u(t) = 0.
e 5.5 The relay characteristics of parts (a), (b), and (d) satisfy [y(2)] < k}u(t)| for some k > 0. Therefore,
supy>o [¥{t)] < ksup,yo ju(t)] and f7°y?(t) dt < K? [® w?(t) dt. Thus, in these three cases the system is
both finite-gain L, and finite-gain £; stable. In case (¢), the system is clearly £, stable since the output

is always bounded. However, it is not £; stable. For example, the £; input u(2) = e~ produces the output
y(t} = 1 which is not £,.

o 5.6 Let V(t,z(t)) = 0.

D,W = lim sup %[W(t + h,z(t + h)) — W (¢, z(t))]
h=0t

= lim sup -’1;\/V(t+h,z(t+h))
h=0+

We have e
V(t+h,z(t+h)) £ 5 lle (¢ + W2




ot + h) = A[f(t,0) + g(t,0)] + o(h) = {lz(t + &)|* = K?||g(t,0)]|* + ho(h)
lV(t +hz(t+h)) <2 |lg(t 0)JI% + (h) “6’(:) °(h)

hmhizg+i\/V(t+h z(t + h)) < \/_J(t) < \/_\/_

since y/cq/2c; > 1. Thus

S ot
which agrees with the right hand side of (5.12) at W = 0.
¢ 5.7 Following the proof of Theorem 5.1, it can be shown that

L
2% 731

' c;
izl < v supflu(t)ll + A1, where 7 = ~izol
t>0 1

Consequently,
Hyl < (mm +n2) sup ()l + 81 + ma

which shows that (5.11) is satisfied with p = oo and
Cqu
y= m+’“ , B= mllzoll\/ +m

s 5.8 Following the proof of Theorem 5.1, it can be shown that
» ﬂl V "-"0"

fle()l £ m supllu(t)li+ﬁ1, where 1 =

Using (5.20), we obtain

WO < o (nsup (el + 51 ) + oa (suplhu) +7
< (map o) +ox(28:) + s (s Ioctl) +

which shows that {5.22) is satisfied with
W(r) = e1(2nr) + ax(r), fo=au(281) +1
¢ 5.9 Consider the system
z A(t)z + B(t)u
y = C(t)z+ D(tu
Assume that all matrices are uniformly bounded; that is,
JAGN < e1, IBAI S c2, NC@WH < es, IDE)I Seas ViRt
and the origin of £ = A(?)z is exponentially stable 80 that the transition matrix ®(t, ;) satisfies
IB(2 ta)]] < ke™¢=%), ¥i>4

It can be easily shown that
t
() < cske™2l=t0) ||| 4 / cacske™=|u(r)|] dr + cqllu(t)l]
to

From this point on, proceed as in Corollary 5.2.




* 5.10 (1) Let V(z) = 32°.
V=-(1+uszt< —(1-ru)zb, Viu<r, <1

By Theorem 5.2, we conclude that the system is small-signal Lo, stable for sufficiently small |z(0)|. Taking
u(t) = -2, it can be seen that the system is not L stable. The origin of the unforced system in not
exponentially stable. However, the origin of the forced system is asymptotically stable for |u] < 1, which
implies that [y(t)| £ B(j2o|,t). Therefore, the system is small-signal finite-gain Lo, stable.
(2) We saw in Exercise 4.54 that the system is input-to-state stable. Using Theorem 5.3, we conclude that
the system is L, stable. The origin of the unforced system in not exponentially stable. However, the
origin of the forced system is asymptotically stable for [u] < 1, which implies that |y(t)] < B(|zo|,t) + |u(t)|
Therefore, the system is small-signal finite-gain Lo, stable.
(3) Since |y| < 3, the system is finite-gain L, stable.
(4) With V = 2z?, we have

V=-2l—zt+22u < —2?, V|z|>|u|
By Theorem 4.19 we conclude that the system is input-to-state stable. Using |yl = |zsin(u)| < |z], we
conclude by Theorem 5.3 that the system is £, stable.

e 5.11 (1) We saw in Exercise 4.55(1) that the system is input-to-state stable. By Theorem 5.3, it is Loo
stable. Take V = 3(z} + 27) and set u = 0. Then, V = 2V, which shows that the origin is globally
exponentially stable. All the assumptions of Theorem 5.1 are satisfied globally. Therefore, the system is
finite-gain £, stable.

(2) We saw in Exercise 4.55(2) that the system is input-to-state stable. By Theorem 5.3, it is £ stable.
By linearization, it can be seen that the origin of the unforced system is exponentially stable and all the
assumptions of Theorem 5.1 are satisfied locally. Hence, the system is small-signal finite-gain £ stable for
sufficiently small |jz(0)||.

(8) Let V = {(z% + z3). When u =0, we have

V=2V(2V-1)>0 when V> 1/2

Thus, solutions starting in ||z]fz > 1 grow unbounded. This shows that the system is not L, stable.
By linearization, it can be seen that the origin of the unforced system is exponentially stable and all the
assumptions of Theorem 5.1 are satisfied locally. Hence, the system is small-signal finite-gain £, stable for
sufficiently small ||z(0)]|.

(4) We saw in Exercise 4.55(6) that the system is input-to-state stable. By Theorem 5.3, it is £, stable.
By linearization, it can be seen that the origin of the unforced system is exponentially stable and all the
assumptions of Theorem 5.1 are satisfied locally. Hence, the system is small-signal finite-gain Lo, stable for
sufficiently small ||z(0)]|.

(5) With u = 0, the system has three equilibrium points at (0,0), (1,1) and (—1,~1). By linearization,
it can be seen that the equilibrium points at (1,1) and (~1,—1) are saddles. By sketching the phase
portrait, we can see that there are trajectories that diverge to infinity. Hence, the system is not £, stable.
By linearization, it can be seen that the origin of the unforced system is exponentially stable and all the
assumptions of Theorem 5.1 are satisfied locally. Hence, the system is small-signal finite-gain £, stable for
sufficiently small ||z(0)]].

(6) We saw in Exercise 4.55(3) that the system is input-to-state stable. By Theorem 5.3, it is £, stable.
By linearization, it can be seen that the origin of the unforced system is not exponentially stable. Therefore,
we cannot apply Theorem 5.1.

(7) We view the system as a cascade connection of the linear system

HL=-21—-Z2, Ta=T1—I3+YU, WN=D

and the delay element y(2) = 31 (¢ — T). The linear system has a Hurwitz matrix. Hence, by Corollary 5.2,
it is finite-gain L, stable. The time-delay element is finite-gain £, stable. Hence, the cascade connection

is finite-gain Lo, stable.




s 5,12 We start by investigating stability of the unforced system
£ =29, do= —(.151 + En) - h(nu + 3‘2)

We use the variable gradient method to find a Lyapunov function. V = ¢T(z)f(2) = g1(z) fi(z)+ ga(z) f2(z).
Since fa(z) = =(x1 + 22) — h{x1 + z2), let us take g2 = 7; + z5. From the symmetry condition 8¢, /0z2 =
892/0z, = 1, we take gy = bzy + z2. Then V(z) = $bz} + 2172 + 372. The quadratic function V{z) is
positive definite for & > 1.

V = (bz1 + 22)22 — (21 + 22)% = (%1 + 22)h(z1 + 22) = =27 + (b — 22122 — (71 + T2)h(21 + 22)
Taking b = 2 yields

V=—22— (21 + 22)h(z1 + 23) < 22 —a(x) +22)2 = —27 @z
where Q = 1_+aa -aa . The matrix Q is positive definite; hence, the equilibrium point at the origin is

globally exponentially stable. Now consider the forced system. The Lyapunov function V satisfies inequalities
(5.6)-(5.8) globally. It is easy to see that (5.9) and (5.10) are satisfied globally. It follows from Theorem 5.1
that the system is L, stable for each p € [1, 0}

e 5.18 Since W(z) is positive definite and radially unbounded, it follows from Lemia 4.3 that there is a
class K, function o such that W(z) > af(|fzf]) for all z € R™. Since |)(u)| is positive definite, it follows
from Lemma 4.3 that there is a clags K function pg such that |¢(u)] < go(|luil) for all u € R™. Hence,

%Z—f(w, v) < —allizl}) + po(llull) < —%a(llﬂl)-‘ Vlizll = @™ (2po(llult})

We conclude from Theorem 4.19 that the system is input-to-state stable. Furthermore, [Jk(z,u)|| is a positive
definite function of [ : ] . It follows from Lemma 4.3 that there is a class X, function py such that

T

2 1) < ezl + mc2luld, ¥ @

WG, )l < o1 (

Thus, {5.23) is satisfied globally with n = 0. We conclude from Theorem 5.3 that the system is £, stable.
¢ 5.14 From Example 5.2, we know that

ly=lles < Ihllc,lurllc,

This inequality implies that the £, gain is less than or equal to ||hllz, = f;~ [A{t)| dt. From Theorem 5.4,
we know that the £» gain is sup,er|H(7w)|. Hence,

-+
supuerlH(iw)| < ] ()] dt
1]

e 5.15 (1)
flz) = [ —asin:: — kzq ]’ ¢G= [ (1) ] » Rz =2
Let W(z) = a(1 — cosz1) + §23. W(z) > 0 for all z € R2.

aw .
—5z—f(z) = [ asingT; f 2 ] [ —asin:j — kzy ] = —kﬂ?g = —-kh'*’(a:)




%G:[asinzl :cz] [(1]]=22=h(=)

Thus, W (z) satisfies (5.32)—(5.33) globally. 1t follows from Example 5.9 that the system is finite-gain £,
stable and its L2 gain is less than or equal to 1/k.

(2

—2a ( 0
fe)=| sy —zasat(a}~23) |, G=| =z |, hiz)=2}-22
z3 sat{z? — z) | -2

Let W(z) = %.‘L’TI.

-3 T
me(,:) ={®m 22 23] | ;-2zomat(cd -13) | = ~(z2 - 23) sat(z? — 22) = ~h sat(h)
bz T3 sat(z? — 23)
0
aw
E—G’:[zl To zs] [ T ]:zﬁ—zi:h(z)
-Z3

Let D = {z € R? | |h(x)] < 1}. W(z) satisfies (5.32)~(5.33) in D with k = 1. Taking V(z) = W(z) and
7 =1, it can be verified that (5.28) is satisfied in .D. Consider now the unforced system.

h(z(t)) =0 = #3(t) =0 = =z3(t) = constant = #,(f) =0

= n{t)=0 =2 £H{(1)=0 = z(i)=0 = z3(t) =0

Using of Lemna 5.2, we conclude that, for sufficiently small |)zo]], the system is small-signal finite-gain £,
stable and its £; gain is less than or equal to 1.
(8) Let D = {z € R? | |2z, + 3| < 1}. For z € D, the system is given by

t=Az+Bu, y=Cr

e A=[_01 _11],B=[g],c=,[1 0]

Since A is Hurwitz, there exist positive constants k; and k; such that for all [|z(0)|| < k; and supy s [u(t)] <
ks, 2(t) € D for all ¢ > 0. The system is linear time-invariant and its £, gain can be determined using
Theorem 5.4. The transfer function is

1w

T2 4+8+1 8%+ 2wns +

— wa=1, (=05
sup |H(ju)f = —me = 2
weR V1= V3

Thus, for sufficiently small [zo[|, the system is small-signal finite-gain £, stable and its £, gain is 2/v/3.
(%)

19| gy fena ] €=[ 2] Mo=2s,

Let W(z) = {=f + }2%.

W
Fie=la wl| o 2 o ]=-t+adad<-ded=-ne)




oW 0
EG:[.’L‘? .'rz] [21]=$1x2=h(z)

Thus, W(z) satisfies (5.32)-(5.33) globally with £ = 1. It follows from Example 5.9 that the system is
finite-gain £ stable and its £y gain is less than or equal to 1.
¢ 5.16 (a) Let V(z) = [ o(y) dy + Lz} + 22).

—51 .‘510‘(.‘!1)-1'24--’1’120 < -33"12"'32“

< =1 -0zl - Olizlf + lizllalu] < ~(1~6)l=lf; ¥ lizlls > |ul/6

where 0 < 8 < 1. It follows from Theorem 4.19 that the system is input-to-state stable. Since vl = |=2) <
|lzljz, we conclude from Theorem 5.3 that the the system is £, stable.
(b) Let V{z) = o7 oly) dy + (a2 +23)]

v, 18V, o (8V\T 1.
M o= gf+335,66 (6::) +5h7h

o? 1, a? 1) ,
= a[-zl—216(11)—22]+2 232+2£2 < -—a+-2—7?+§ T3

14

Choosing a = v = 1 yields # < 0. Hence, the system is finite-gain Lo stable with £2 gain less than or equal
to one.

e 5.17
v f+ - ‘;_ZH‘;_‘;GT,- %(L+Wu)T(L+Wu)+ L+ wuT L+ wy)

g
3
- _1 T . . l.r, 1l
= - L+ (L+Wu)+{axf+2L L+3h h}
Y, OV T v 1 r.2;_ g7

2h h+a —Gu—-h Ju—EEGu+-2-u (7I—J Ju
- -;-(L+ Wu)T(L+Wu)+‘H—%hrh—hTJu+%'y’uTu—%uTJTJu

= —%(L+Wu)T(L+Wu) — f+ G + 3L L+ LTWu+ aTWTWy

1 1 1
- §(L +Wu)T(L+Wu)+H + §7zuTu - EyTy

# < 0 implies o, .
l 2, T, . 1T

f +5,0us 21 vu~ Yy

From this point on, proceed as in the proof of Theorem 5.5 (starting from (5.29)).

» 5.18 The closed-loop system is given by

T
z‘=f-GGT(%) +Kuw

The closed-loop map from w to [ ﬂ ] is given by

i = flo) +GCela)w
Ye = hc(..":)




where

avyT | h
toms=00(G) e[ 1] b | ooty |

For the closed-loop system, the left-hand side of (5.28) is given by

_av 1 [8V {8V 1,5
He = Bzf°+272 (8::)G‘G‘ (E—) + ghe he

= E oo (%) | () (3) s i (B oo (B)
= % [f 6 \%) |t 5 ) KK \5) *5P "*5(37 GG (a)

V. 1/(8V\[1 _ o 21 (VT 1.
3—2f+§(8$)[‘)'2KK —GG](EE) +§hh

<0

1l

From Theorem 5.5, we conclude that the closed-loop map from w to [ z ] is finite-gain L, stable with £p

gain less than or equal to v.

+ 5.19 (a) The existence of § follows from the fact that

. 1—6/2-\/3_ €
= v S R

Thus, by choosing § small enough, we can make (1 — ¢/2— v8)/vVI—8 > 1 —«.

(b) By definition of the L2z gain, we can find u € L5 such that jjulic,, = 1 and ||y}lz,p > 12r(1 - €/2).
I there was no such v, we would have |lyllc,» < ¥2r(1 — €/2) for all ||ullz,, = 1, which contradicts the
claim that y;g is the Lip gain. By choosing J of part (a) less than one, there exits time #, such that
S uT(t)u() dt = 6. :

(c) We have :
oo t
[t = [ Teuw d=s + hulen =v3
- -] I [ -]
f uf (huy (t) dt = f wT(thut)dt =1-8 = |ullc,e = V1-20

-—00 t

Consequently,
ivallcar < ’7‘23\/3
and .
"ylllﬁzJI 2 "ﬂlﬁzn - "yQ!IC:n 2 YR (1 - E) - \/3’721;

Therefore,

li311lcan s 1- €/2— /8
futllean = V1=
(d) Let u(t) =w(t+t)and y(2) =p(t + 1)

Nr2(l-€nr

/m uT (t)u(t) dt = /muf(t +Hlu(t+ty) dt= /oo u (1) Tuy (r) dr
0 0 )

Which implies that {lullz, = [lu1]lc,a- Similarly, liylle, = llyilic.n- The fact that y(2) is the output
corresponding to u(t) follows from linearity. Finally, |lyllc, > (1 ~ €)varllui|c, follows from part {c).
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¢ 5.20 The closed-loop transfer functions are given by

(5 ] [ (2] " L]
The closed-loop transfer function from (v, uz) to (¥1,¥z) ( or (1, €z)) has four components. Due to pole-zero
cancellation of the unstable pole s = 1, three of these components do not contain the unstable pole; thus,

each component by itself is input-output stable. If we restrict our attention to any one of these components,
we miss the unstable hidden mode. By studying all four components we will be sure that unstable hidden

modes must appear in at least one component.
e 5.21

1r = (Hhe1),, yor = (Hzea),

A

ln-lle £ milesllc+5
1 .
g [1 o = (lurelle + malluzelle + 82 + ’rzﬂ:)] + 5

1A

_ Ny n(B2 + v251)

= Tl + T e+ 2L
‘T ilg) TP+ B

- U Y- + Us . e —

The expression for ||yz-||c can be derived in the same way.

¢ 5.22 (a) Let the underlying space be £,,. We have dj, dy € Loo. From the analysis of Example 5.14, we
have e;, €3, T € L, provided € < 1/7ys. From the equation

eff = An + ¢A™ Bey

we see that 17 € Loo. Thus, for sufficiently small ¢, the state of the closed-loop system is uniformly bounded.
(b) From (5.44), we see that one of the terms on the right-hand side is eyy||dz||c.. . For d2(t) = azinwt, this
term is given by )

evrlldzllc., = ewary
When the product ew is small, the term is negligible. However, as we increase w, the product ew will no
longer be small. At frequencies of the order O(1/¢), the product ew will be of order O(1). While the system
remains Lo, stable, the bound on z, given by (5. 44), not be close to the bound +l|d]|_, + # + v52, as
concluded in the example. The oonclusxon of the example is valid only for frequencies of the order O(1) (or
frequencies for which ew is smali).

¢ 5.23 (a) Using

- — 1.3
e = U;—1y2 —0—513
€2 = Uzt = Iz
we obtain
fH = -z +x2
£y = —.T?—:I.'z—%zg-Fu
I3 = Ig9— zg
y = X2
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(b) We search for functions V) and V; that satisfy the Hamilton-Jacobi inequality for the systems H; and
Hy, respectively. For Hi, let Vi = ay (32 + 123), o1 > 0.

2 2
- 4, .0, 0 9 1, a1y ,
H—'01(31+32)+ﬁ32+5325(*0!1+'2Tf+§)3’z

Choosing a; to minimize v, we end up with a; =7, = 1. For Hy, let V5 = (aa/4)z3, a2 > 0.

= af 1\ 4

Choosing a3 to minimize 13, we end up with a3 = % = }. Since 1% = 1 < 1, we conclude by the

small-gain theorem that the closed-loop system is finite-gain £, stable. To find an upper bound on the L;
gain, we search for a function V' that satisfies the Hamilton-Jacobi identity. We consider

o

1%

and we allow ourselves the freedom to change the choice of the positive constants &, and as.

av a
4 1 3
b f=-mal-oazl - 5 2273 + @22273 - gzl

Choose az = a3 /2 to cancel the cross product term.

av
—a;'G = QT2

Viz)=Vi+Va=ay ({2t +323) +

2 2

- 4 z_1 6, 01 1, oy o 1Y) ,

= -] —a17; — Tzs + 5—;3- + Ezz < (-m + 2—72% + -2-) z3

Choosing a; to minimize v, we end up with o; = 4 = 1. Thus, the £, gain is less than or equal to one. Note

that a more conservative upper bound can be obtained by applying (5.40). According to (5.40), an upper
bound on the £; gain from u = u; to y =y, is given by

m___1
1-my 1-}

RIS
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Chapter 6

¢ 6.1 Define i, i, and 4 as shown in the next figure. Then,

i=h{t,u)— Ky, i=Ku, d=1i+y
From
[A(t,u) = Kyu]T [A{t,u) — Kou] <O
we have
FH-Ku<0 = §7F-a)<0 = §T(-8)<0 & Fua20
% + i u Y+ 7]
K- y = A(t,u) —
+ -
K,
Figure 6.1: Exercise 6.1
e 6.2

V = ah(z)z = h(z) [—-a: + %h(z) + u] = %h(z)[h(a:) - kz] + h(z)u < yu

 + 8.3 Take V(z) = §[ka’z} + 2kaz122 + 23+ 6[:‘ h(y} dy, where § > 0 and 0 < k < 1. V(z) is positive
definite and radially unbounded.

14

6[ka2£’1 + kazs + h(z))}z2 + b(kazy + z2)[—h(z1) — azz +u]
—bkazy h(z,) + 8(ka — a)z3 + S(kaz; + z2)u

yu -V = (az; + T2)u + Skaz h(zy) — d(ka — a)23 — 6(kazy + za)u

Take § =1and k =a/a < 1.
yu—V = az h{z;) + 6(a — o)z}

The right-hand side is a positive definite function. Hence, the system is strictly passive.
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e 6.4 Since 0 < ;12 < ak/2, P is positive definite.

/ kh(z:)i) + 227 P

kh(z1)z2 + (2ap12a1 + 2p1222)22 + (2p1271 + kaza)[—h(z1) — 822 + 4]
2p1223 ~ 212z (1) + 2p1aziu — kaz? + krou

v

Hence,

V+u?- 2p12:z§ + 2p1axr h(r) — 2p1aziu + kazg

= V4 (u=-pan1)? - ploal £ 2p1271A(21) + (ka — 2p1g)23
2 V=l + 2102 + (ko - 2pn)a) = V +9(2)

=
f

Since p1z < min{2e, ak/2}, ¥(z) is positive definite. Hence, the system is strictly passive.

¢ 6.5 We have X(s) = (Ms+K)™1U(s) or (Ms+K)X(s) = U(s). Thus, the state model for the dynamical

system is
Mi=-Kz+u

Let V(z) = f: hT(e)M do > 0.
V = kT (z)Mz = KT (z}(—Kz + u) < —AT(2)h(z) + kT (z)u = —4Ty + yTu
Heunce, the system is output strictly passive.

686 Wehaveu; =uz=uand y =1y, +p. Let

M,
uTy > T:f‘ (z1,8) + uTp1(6) + 97 p () + ¥a(z1)

v,
uTys > ?z—:fz(zz, u) + uTipa(u) + 13 pa(ya) + va(za)

where V] = Vi(z;)'and Vi = Va(z3). Then,
av
wTy=uT (g +42) 2 2o f@ ) +uTo(w) +ul o (1) + 43 P2 () + ¥(2)

where V(z) = Vi(z1) + Va(22), ¢(u) = v1(u) + p2(u), ¥(z) = ¥1(21) +2(22), and f(z,u) = ﬁgi::i ]

The proof follows from this inequality for the cases of passivity, strict passivity, and input strict passivity.
For output strict passivity, we require y7 pi(y;) > 857w, for all y;, for some &; > 0. Then

¥i mlw) +y3 p2(we) 2 L min{6,, 8} y7y

where we used the fact that
(1 +32)T (1 + y2) < 2070 + T y2)

¢ 6.7 G(s) is Hurwitz if and only if a; and a, are positive.

bi +jbow | _ haz+(boay — b Ju?
-w? + jayw (a2 — w?)? + ajw?

Re[G(ju) = Re -

Re[G(jw)] > 0 for all w € R if and only if by > 0 and bye; > b;.
wli_{go w?Re[G(jw)] = boay - by

Thus, G(s) is strictly positive real if and only if all coefficients are positive and b, < bya;.
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e 6.8 For any strictly positive real transfer function, I? + DT > 0. Since, D + DT is nonsingular, we have
D+ DT > 0. Hence, W is a square nonsingular matrix. Thus,

LTL=L"W(D+D")'WTL
Substituting for WT L from (6.15) we obtain
LTL=(CT - PBYD +DT)"}(C - BTP)
Substituting this expression in {6.14) yields
Pl(e/2) + A] + [(e/2)] + ATP + (CT - PBY(D + D)y (C-BTP)=0
Factoring out the quadratic term, we obtain the given Riccati equation.
¢ 6.9 Since the system is input strictly passive with ¢{u) = gu, we have
uly > %g-f(z,u) +eufu, €>0
Since the system is finite-gain £, stable, we have
f "y de < f " WT@)u) dt+Br m >0, B 20
T

n 1

To arrive at the desired inequality, we need to assume that 8; = 0. From the first inequality, we have
T2
Viz(r2)) = V(z(n)) < [ (w7 (t)u(2) — eu” (t)u(t)] at
n
™o _€ ?or -
fn WT(Ow(e) dt - f " uTwu(o &~ f WT(tult) dt

n

[T -5 [T uTwum et - = [0 a
n ks |

TL

IA

Since this inequality is valid for all 7; > 7y > 0, we have

8V T £ T £ T T 6V £ T [ T
—flz,u) < - _ = > — f(z, - —_—
axf(zu)-uy it i M u'y 2 == flz,u)+ 5u Ut gy

e 6.10 (a) The equations of motion are
Mg} +Clg.9)g+Di+9(g) =% y=¢

The derivative of V = $£47 M(q)¢ + P(q) is given by -

- 1 . P
= d™TMioVi + =T M -
14 g (0)q+2q Mq+--aqq
T

= qT[u—C(q.q)q—Dq~y(q)]+§qTMq+gT(q)q = yTu-y"Dy < yTu

where we have used the property that M — 2C is a skew-symmetric matrix. The inequality V < yTu shows
that the system is passive.
(b) In this case _

V <y (—Kay +v)
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which shows that the map from v to y is cutput strictly passive.
(c) With v = 0, we have o
V<4 TKay=-4TKeG <0

V=0= ¢t)=0 = =0 = glg(t)) =0 = q(t) =0

Hence, the origin is asymptotically stable. It will be globally asymptotically stable if ¢ = 0 is the unique
root of g(q) = 0 and P(g) is radially unbounded.

¢ 6.11 (a) Let V = }J1u? + FJowi + L Jywi
V = Dy + Jawgin + Jawsis ,
= (J2 - J3)wiwgws + wntg + (Js = Sy )wiwnws + wata + (0 — K)wwaws + wauy = wlu

which shows that the system is lossless.
{b) With u = —Kw + v, we have

f/' = —wTKw -+ ‘UTw = va > V + Amiﬂ(K)”wllg

Hence, the map from v to w is finite gain £, stable with £, gain less than or equal to 1 [Amin(K).
(c) With u = —Kw, we have V = —~w” Kw. V is positive definite and radially unbounded and V is negative
definite for all w. Hence, the origin is globally asymptotically stable.

» 812
er = U~y = U — hy(za) — fa(zz)ez
e2 = Uzt = uz+ hz)+ fi(z)e
Substitute e from the second equation into the first one.
€1 =ty — ha(23) — Jo(Z2)[uz + hi(2y) + 1 (z1)e1]

[ + Ja(za)1(z1)]er = vy — ha(z2) — Ta{zg)uz — Jo(z2)h (21)
&1 = [T + Ja(@2)J1(21)) " ur = ha(za) — Ja(z2)u2 — Jo(z2)ha(21))
€2 = Uz + hy(21) + Ju(@ )T + Ja(z2) 1 (21)] 7 (1 ~ ha(22) — Jo(z2)ug — Ja(a) s (21))
Similarly, Substituting e, from the first equation into the second one, we obtain

ez = [I + Ji(@1 )2 (22)] " [z + Ba(31) + Fi(z1)w1 — Ji(21)ha(zs)]
Substitute the expressions for €; and e; into the equations |
$1 = fi(z1) + Gi(z1)e1, &2 = folzy) + Ga(z2)er
® 6.13 Let us start with (6.26)~(6.27).
er = vy — hy(22, €2}, e2 = ug + hy(z;)
substitute e; from the second equation into the first one.
e1 =ty — ha(Z2,uz + ha(z1))
The pair (), €2) is uniquely determined. Consider now (6.30)-(6.31).
€1 = u; = ha(t, e2), e = ug + h(zy)
substitute e, from the second equation into the first one.
e1 = uy — hz(t,uz + hyi(z1))

The pair (e;, e2) is uniquely determined.
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¢ 6.14 (a) Take Vi = (1/2)(z} + 23) and V2 = f;* ha(s) ds.
Vi = —zahi(ze) + T2er = per = Vi + nhi(m)
Since h; € (0, 00), H; is output strictly passive.
Vi = ~z3ha(z3) + exha(zs) = 126z = Vo + zsha(zs)

Since hy € (0, 0], Ha is strictly passive. Thus, the feedback connection is passive.
(b) With e, = 0, we have

J(E)=0 = o) S0 = 23()=0 = z,(t) =0

Hence, H, is zero-state observable and the origin of the feedback connection is asymptotically stable. It is
globally asymptotically stable if ¥; and V3 are radially unbounded. V] is radially unbounded because it is a
quadratic form and V¥, is radially unbounded because

(e ds> [ 2 ds = tin(1 422
/; 2(3) _[0 T2 ¥=3 (14+25) — ooas|zz| = 0

Thus, the origin is globally asymptotically stable.

» 6.15 (a) Let V; = 2z} + 123.
Vi = -2t - 23 +ue

Hence, H is strictly passive. Let V3 = 12§
Va = —z§ + paey

Hence, Hj is strictly passive. It follows from Theorem 6.1 that the feedback connection is passive.
(b) Since both systems are strictly passive with radially unbounded storage functions, it follows from The-

orem 6.3 that the origin is globally asymptotically stable.

e 6.168 To study asymptotic stability, take uy = 0 and u; = (. Then, e; = —y3, €2 = y1. Suppose H; is
input strictly passive.

Vicefm=~yln, Ve<ely—elpaler) =3fn—efpaler), e3uwales) >0 Ver #0

Take V = V; + Va. _ _
V<—elpa(es) <0 and V=0 = =0 = g =

By zero-state observability of H,(—H),
n)=0 = z()=0

Hence, by LaSalle’s invariance principle, the origin is asymptotically stable. Similarly, suppose H; is output
strictly passive.

Vicelm-vnm)=—-vwn-vinnwm), V<=1, yInm)>0 Yy #0

Take V = 1] + V4. ] '
VS-yimm) <0 and V=0 = =0

By zero-state observability of Hy(—Ha),
nt) =0 = z(t)=0
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¢ 8.17 To study asymptotic stability, take u2 = 0 and u; = 0. Then, ez = y1, &1 = —y4. Suppose H; is
input strictly passive.

Va<ely=9lye, Vi<elp ~ elpi(e)) = —yam ~ elpi(er), elpr(e) >0 Ve #0

Take V = Vo + V1. _ .
V<—elpi(e1)<0 and V=0 = e =0 = =0

By zero-state observability of HH;,
p(t)s0 = z(t)=0

Hence, by LaSalle's invariance principle, the origin is asymptotically stable. Similarly, suppose Hj is output
strictly passive.

Va<eltn —yd (i) = 4fwe — 93 pa(n), Vi <efmn= -1, 1T0a(n) >0 Voo £0

Take V =V, + V. . .
V<—3ip(y:) <0 and V=0 = =0

By zero-state observability of H,H;,
=0 = z2)=0

¢ .18 To study asymptotic stability, take u; = 0 and u; = 0. Then, e; = 1, €1 = —y9.
Vi < i Qun + 2T Sres + el Rier, Vo < 32Qows + 207 5202 + €l Raes
Take V=WV +alp,a>0.
V <4{ Qun — 201 S + 93 Raya + o(yd Qaye + 207 Somr + vT Rann)
. w ] @+ aR; -S+aS] W
V<
¥ -ST+a5 Ri+aQs V2
If the matrix is negative semidefinite, the origin is stable. If the matrix is negative definite,
V=0 = y=0

By zero-state observability
y(t)=0 = z(t)=0

*8.19 Whenu=0,wehaveei =u ~y2=—to, 2 = ta+ o = yo, and ef 1 + eJ ya = ulpn + ulys = 0.
Use V = V1 + V4 as a Lyapunov function candidate for the closed-loop system.

et — el r{er) — yF () + €3 y2 — eXozle) — v P2 (v2)
T or(n) + 1] 22(80)] ~ W palve) —~ v er(-p2)] < O

V=0 = nn)+e0n)] =0 and 47 (oa(re) - w2(-12)] =0 = 31 =0 and =0

v

A

Now
n(t)=0 =>e(t) =0 and p(E)=0 = 6(E)=0

By zero-state observability,
nE)=0 =2 2:(1) =0 and y{t) =0 = z2(1) =0

Hence, by the invariance principle, the origin is asymptotically stable. It will be globally asymptotically
stable if V; and V. are radially unbounded.
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Chapter 7

¢ 7.1 (1) The Nyquist plot of G(s) for w > 0 is shown in Figure 7.1. It is a circle centered at (—4,0) with
radius equal to % The plot for w < 0 is identical; that is, the Nyquist plot traverses the circle twice as
w changes from—oo to oc. The transfer function has two poles in the right-half plane. Thus, for absolute
stability, the disk D{(a, 3) must be inside the circle, so that the Nyquist plot encircles the disk twice in the
counterclockwise direction. Clearly, the largest disk is the circle itself. Thus taking

-1 -1 -1

PRl vy

where £, > 0 and £2 > 0 are arbitrarily small, we conclude that the system is absolutely stable for the sector
[1+e€, 1/e3)-

(2) The Nyquist plot of G(s) for w > 0 is shown in Figure 7.2. Since G(s) is Hurwitz we can apply case 2
or case 3 of the circle criterion. For case 2, we see that the Nyquist plot lies to the right of the vertical line
through (—0.021,0). Thus the system is absolutely stable for the sector [0, 47.62). For case 3, the Nyquist
plot should be contained inside the disk D(a,8). We chose a circle of radius 0.114 centered at 0.0732.
Thus, a = -1/0.1871 = ~5.34, § = 1/0.0408 = 24.51, and the system is absolutely stable for the sector

[-5.34,24.51).

Imaginary Axis

-1.5 -1 -0.5 0 0.5 -0.1 ] 0.1 0.2
Real Axis Real Axis

Figure 7.1: Exercise 7.1(1). Figure 7.2: Exercise 7.1(2) .

(3) The Nyquist plot is shown in Figure 7.3. Since G(s) is Hurwitz we can apply case 2 or case 3 of the circle
criterion. For case 2, we see that the Nyquist plot lies to the right of the vertical line through (-0.35,0).
Thus the system is absolutely stable for the sector [0,2.857]. For case 3, the Nyquist plot should be contained
inside the disk D(a, 5). We chose a circle of radius 1.07 centered at 0.35. Thus, a = —1/1.42 = —0.704,
B =1/0.72 = 1.389, and the system is absolutely stable for the sector {—0.704, 1.389).
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(4) The transfer function can be simplified to

§=1
G(s)=32+1

It has poles on the imaginary axis. We close the loop around G(s) with o. the transformed transfer function

_ Gy 1-s
Gr(s) = 1+aG(s)  2+(a-1)s+1

is Hurwitz for 0 < a@ < 1. Take a = 0.1. The Nyquist plot of Gr(8) is shown in Figure 7.4. It lies to the
right of the vertical line through (-2.76,0). Thus the system is absolutely stable for the sector [0.1, 0.4632).

Nyquist Diagrams

0.5} K N

Imag Axis
(=)

P

imaginary Axis

-05

0.5 0 0.5 1
Real Axis

Figure 7.3: Exercise 7.1(3). Figure 7.4: Exercise 7.1(4).

(5) The Nyquist plot is shown in Figure 7.5. The transfer function is Hurwitz. Therefore, we can apply cases
2 and 3 of the circle criterion. We start with case 2. From the Nyquist plot we find that min{Re[G(jw)]} >
—0.6. So we choose § = 1/0.6 = 1.67 and conclude that the system is absolutely stable for the sector [0,1.67).
Now we apply case 3 of the circle criterion. The Nyquist plot should be inside the disk D{a, 8). We locate
the center of the disk at (0.2,0) and take the radius as 0.9. The circle is shown in Figure 7.5 (dotted line).
Thus, 1/a=-1.1 = a=-091,1/=0.7 == § =1.43, and the system is absolutely stable for the sector
[—0.91,1.43).

(6) The Nyquist plot is shown in Figure 7.6. Since G(s) has one pole in the right-half plane, we apply case
1 of the circle criterion. The Nyquist plot should encircle the disk D{a, )} once CCW. We chose a circle of
radius 0.09 centered at (—0.16,0). Thus, a = 1/0.25 = 4, § = 1/.07 = 14.29, and the system is absolutely

stable for the sector [4,14.29].

(7) The Nyquist plot is shown in Figure 7.7. The transfer function is Hurwitz. Therefore, we can apply cases
2 and 3 of the circle criterion. We start with case 2. From the Nyquist plot we find that min{Re[G(jw)]} >
—0.341. So we choose # = 1/0.341 = 2.93 and conclude that the system is absolutely stable for the sector
[0,2.93]. Now we apply case 3 of the circle criterion. The Nyquist plot should be inside the disk D(a, 5). We
locate the center of the disk at (0.3,0) and take the radius as 0.8. The circle is shown in Figure 7.7 (dotted
line). Thus, 1/a = —-1.1 = a=-091,1/8=0.5 = £ =2, and the system is absolutely stable for the
sector [-~0.91,2]. :

(8) The Nyquist plot is shown in Figure 7.8. The transfer function is Hurwitz. Therefore, we can apply cases
2 and 3 of the circle criterion. We start with case 2. From the Nyquist plot we find that min{Re[G(jw)]} >
—0.08. So we choose § = 1/0.08 = 12.5 and conclude that the system is absolutely stable for the sector
[0,12.5]. Now we apply case 3 of the circle criterion. The Nyquist plot should be inside the disk D(a, 8).
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1 1
.05 0.5
2 2
én 0 E: 0
-0.5 -0.5
-1 — -1 . :
-1 =05 0 0.5 1 -2 -15 -t -05 0
Real Axis Real Axis
Figure 7.5: Exercise 7.1(5). Figure 7.6: Exercise 7.1(6).

We locate the center of the disk at (0.1,0) and take the radius as 0.21. The circle is shown in Figure 7.8
(dotted line). Thus, 1/a = —-0.31 = a = -3.223,1/8=011 = f§=9., and the system is absolutely
stable for the sector [-0.31,9.1]. :

Nyquist Diagrams Nyquist Diagrams

0.2

0.1

-0.1
0.5
-0.2
-1 05 -0.2
Real Axs
Figure 7.7: Exercise 7.1(7). Figure 7.8: Exercise 7.1(8).

e 7.2

(a) The Nyquist plot is shown in Figure 7.9. The plot lies entirely in the right-half plane. By case 2 of the
circle criterion, we conclude that the system is absolutely stable for the sector [0, 8], where 8 can be made
arbitrarily large. Consequently, the system is absolutely stable for the sector [0, 1].

(b) The nonlinearity sat(y) belongs to the sector [0, 1]. Hence, the system has a globally exponentially stable
equilibrium point at the origin. This implies that there can be no periodic solutions, since every solution

must converge to the origin.
» 7.3 (a) The equilibrium points are the roots of the equations
O0=—2y—h(z1 +22), 0=z — 23— 2h(z; + 22)
Multiply the first equation by —2 and add to the second equation to obtain the equation

0= —(z1 + z2) = 4h{z) + z2)
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Figure 7.9: Exercise 7.2.

which has the unique solution x; + z3 = 0 due to the properties of A.
21+ 22=0=2h(n1+22) =022, =022 =0

Hence, the origin is the unique equilibrium point.
(b) Let y =x1 + 72 and u = —~h(z1 + z2). Rewrite the system equation as

£ = -z1+u

fa = T3~-Za+2u
¥y = 1+
u = —h{z)+22)

The system is now modeled as a feedback connection with the transfer function

384+ 4
(s +1)2

and the nonlinear element ¥(y) = h(y). The Nyquist plot of G(s) lies completely in the right-half plane.
Hence, by the circle criterion, the system is absolutely stable for the sector [0, 5], where 5 can be arbitrarily
large. This sector includes the nonlinearity 4. Thus, the origin is globally asymptotically stable.

G(s) =

¢ 7.4 Lety==z and u = —gcoswt z,. Rewrite the system equation as

I = g
£z = —(p+a®)zy —2uxz+u
¥y = o
= —gcoswty

The system is now modeled as & feedback connection with

1
T8 4 2us+ p? +a?

G(s)

and 9(t,y) = gcoswt y. The function ¢ belongs to the sector [—g,¢). We will apply the result of Example 7.1.
We have |¥(t, )| < 12ly| with 2 = ¢. We also have
IGGW)I? = 1
T (12 ¥ a?)? + 202(p% - 0°) + o
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It can be verified that

by for p >

. , or > a
v = sup |G (jw ——{ ulta

! wegl )l 33,,,! for p<a

The system is absolutely stable if g1 < 1. Since the system is linear, this condition ensures that the origin
is exponentially stable.

¢ 7.5 Represent the system as

t=Ar+Bu, y=Cz, u=E{)Cz=E®ty% —v(ty)

This problem is a special case of Example 7.1, with
¥ v)ilz SHE®I:vl: SHylle = =1

and
weR

The condition for absolute stability (v,7: < 1} is satisfied. Hence, the origin is uniformly asymptotically
stable.

e 7.6
(2} The closed-loop state equation is

& = Az + BLsat(—Fz/L) = (A — BF)z + B[Fz — Lsat(Fz/L)]
Setting y = Fz and v¥(y) = Lsat(y/L) — y, we represent the system as
i=(A-BF)z-By(y), v=Fz

which is in the form of Figure 7.1 of the text, with G(s) = F(s] — A+ BF)™1B.
(b) We have 5
el € go5lusl. Vil < L2 +6)

Hence

i=1

= ? & —
ol = )> Wl < gl
This is a special case of Example 7.1, with
4
= —, d = 1
N =g andm=sup NG (w2
Hence, the system is absolutely stable with a finite domain if

é
T+35° sup IG(iw)ll2 < 1
c

(c) 25+1

82 4+5+0.5

It can be checked that sup |G(jw}| < 2.55. Hence, the system is absolutely stable with a finite domain if
1

)
-'—6' 555 = § < 0.6452

G(s) =
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To estimate the region of attraction, we apply the loop transformation of Figure 7.3 of the text.
v=4-Kiy=i+ny, §F=Ky+i=2my+i

The state model of the transformed system is
= (A-BF +vBF)z+ Bi
2voFz + 4
= —(§)
where ) € [0, co). We need to find a matrix P that satisfies (7.6)—(7.8) for the transformed system. Equations
(7.6)-(7.8) take the form

P(A-BF +vBF)+ (A= BF + 2BFYTP = -LTL-¢P

PB =27FT —/2LT

1w N
li

It can be verified that

_ [ 04638 0.3757 _
£=0002, P= [ 03757 92338 J ,and L=[ 02859 —0.4764 ]

satisfy (7.6)—(7.8). The region of attraction can be estimated using V(z) = z7 Pz, as in Example 7.4.

e 7.7 (1) The transfer function has poles in the right-half plane. Therefore, we start by applying a loop
transformation. We close the loop around G(s) with a. The transformed transfer function is

Gls) _ ]
1+aG(s)  #2+(ax—1)s+1

Take o = 1.1. The Popov plot of G7(s) is shown in Figure 7.10. The largest sector is obtained with vy = 0
so that the line of slope 1/7 is vertical and intersects the horizontal axis at a point arbitrarily close to zero.
The transformed system is absolutely stable for the sector [0, k], where k can be arbitrarily large. Hence,
the original system is absolutely stable for the sector [1.1, 8], where 8 can be arbitrarily large.

(2) G(s) is Hurwitz. Its Popov plot is shown in Figure 7.11. The Popov plot approaches the arigin tangent
to a line whose slope is 4.926. We take ¥ = 1/4.926 = 0.203 and k > 0 can be arbitrarily large. Let us verify
that 7 = 0.203 is acceptable. Since G{s) has relative degree two, the product CB is zero in any state-space
realization of G(s). Thus, the condition 2/k+yCB +vBTCT > 0 is always satisfed. The poles of G(s) are
—~2 and —3. Thus the condition 1 + yA # ( is satisfied for v = 0.203. We conclude that the given system is
absolutely stable for the sector [0, k] where k is arbitrarily large.!

(8) G(s) is Hurwitz. Its Popov plot is shown in Figure 7.12. The Popov plot approaches the origin tangent
to a line whose slope is 1. We take v = 1 and k > 0 can be arbitrarily large. Let us verify that v = 1 is
acceptable. Since G(s) has relative degree two, the product CB is zero in any state-space realization of G (8).
Thus, the condition 2/k + YCB + yBTCT > 0 is always satisfied. The poles of G(s) are —0.5 + j0.5v/3.
Thus the condition 1 + YA 3 0 is satisfied for v = 1. We conclude that the given system is absolutely
stable for the sector [0, %) where k is arbitrarily large. We can obtain a sector with a < 0 by applying a
loop transformation. Using the Routh-Hurwitz criterion, it can be shown that G'r(s) = G(s)/[1 + aG(s)] is
Hurwitz if a > —1. Take a = —0.9 to obtain G7(s) = 1/(s? + s + 0.1). The Popov plot of G1(s) is shown in
Figure 7.13. The Popov plot approaches the origin tangent to a line whose slopeis 1 We take y = 1and & > 0
can be arbitrarily large. Let us verify that v = 1 is acceptable. Since Gr(s) has relative degree two, the
product CB is zero in any state-space realization of Gr(s). Thus, the condition 2/k ++vCB+vBTCT > 0 is
always satisfied. The poles of Gr(s} are —0.1127 and —0.8873. Thus the condition 1+ A # 0 is satisfied for
7 = 1. We conclude that the given system is absolutely stable for the sector [~0.9, k] where k is arbitrarily
large. Compare these sectors with the ones obtained using the circle criterion in Exercise 7.1.

Gr(s) =
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Figure 7.10: Exercise 7.7(1). Figure 7.11: Exercise 7.7(2).
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Figure 7.12: Exercise 7.7(3). Figure 7.13: Exercise 7.7(3).

(4) The transfer function can be simplified to
s—1
&) =2 +1

It has poles on the imaginary axis. We close the loop around G(s) with a. the transformed transfer function

G(s) _ l1-3
1+aG(s)  s2+(a-1)s+1

is Hurwitz for 0 < a < 1. Take o = 0.1. The Popov plot is shown in Figure 7.14. The Popov piot lies to the
right of the vertical line through (—2.76,0). Thus, we take v = 0 and k = 1/2.76 = 0.3623. Therefore, the
gystem is absolutely stable for the sector [0.1,0.4623]. This is the same sector obtained by using the circle
criterion because v = 0.

(5) The Popov plot is shown in Figure 7.15. It lies to the right of (and tangent to) a line through (—0.5,0)
whose slope is 3. Thus, we take ¥ = 1/3 and k = 1/0.505 = 1.98. Let us verify that v = 1/3 is acceptable.
Expanding G(s) as a power series in 1/, it can be seen that the coefficient of 1/s is —1. Therefore, in any
state-space realization of G(s), CB = —1. Thus, 2/k +4CB ++vBTCT = 0.3433 > 0. The poles of G(s) are
—1and —-1. Thus, 1+ vA =2/3 # 0. Hence, the system is absolutely stable for the sector {0, 1.98].

Gr(s) =

1We can also show absolute stability with a sector [a, 8] where o is negative by applying a loop transformation. See the
solution of part (3).
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Figure 7.14: Exercise 7.7(4). Figure 7.15: Exercise 7.7(5).

(6) G(s) is not Hurwitz. We need to apply  loop transformation with & > 0 such that Gr(s) = G(s)/ n+
aG(s)} is Hurwitz. Using the Routh-Hurwitz criterion, it can be shown that Gr(s) is Hurwitz if @ > 4. Take
a =4.1 to obtain Gr(s) = (s+1)/(s* +3s* + 4.13+0.1). The Popov plot of Gr(s) is shown in Figure 7.16.
The Popov plot approaches the origin tangent to a line whose slope is 2. We take v = 0.5 and k > 0 can be
arbitrarily large. Let us verify that y = 0.5 is acceptable. Since Gr(s) has relative degree two, the product
CB is zero in any state-space realization of Gr(s). Thus, the condition 2/k + vCB + yBTCT > 0 is always
satisfied. The poles of Gr(s) are —0.0248 and —1.4876 % j1.3466. Thus the condition 1+ vA # 0 is satisfied
for v = 0.5.We conclude that the given system is absolutely stable for the sector (4.1, k] where k is arbitrarily
large. Compare this sector with the one obtained using the circle criterion in Exercise 7.1.

(7) The Popov plot is shown in Figure 7.17. It lies to the right of (and tangent to) a line through (-0.25,0)
whose slope is-1. Thus, we take ¥ = 1 and k = 1/0.2505 = 3.99. Let us verify that v = 1 is acceptable.
Since G(s) has relative degree four, the product C'B is zero in any state-space realization of G(s). Thus, the
condition 2/k +yCB + vBTCT > 0 is always satisfied. The poles of G(s) are at —1. Hence, 7 = 1 does not
satisfy the condition 1+ A # 0. We take v = 1.01. It can be verified that the Popov plot lies to the right of
the fine through (—0.2505, 0) whose slope is 1/1.01 = 0.99 (see Figure 7.17). Thus, the system is absolutely
stable for the sector [0, 3.99).

05
<) o)
E o E
8 8
=Y 0 05
Re[G]
Figure 7.16: Exercise 7.7(6). Figure 7.17: Exercise 7.7(7).

(8) The Popov plot is shown in Figure 7.18. It lies to the right of (and tangent to) a line through (-0.0556, 0)
whose slope is 1.6. Thus, we take ¥ = 1/1.6 = 0.625 and k = 1/0.056 = 17.86. Let us verify that v = 0.625
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is acceptable. Since G(s) has relative degree four, the product CB is zero in any state-space realization of
G(s). Thus, the condition 2/k + vCB + yBTCT > 0 is always satisfied. The poles of G(s) are at ~1 and
—2. Hence, the condition 1+ )\ # 0 is satisfied for v = 0.625 . Thus, the system is absolutely stable for the
sector [0,17.86)].

.15 - ' :
-0.1 0 0.1 0.2 0.3
Figure 7.18: Exercise 7.7(8).

e 7.8 (a) Write V as
. v
V =2TPz +ad®® + bf y(o) do
0
Since P = PT > 0 and ad® > 0, the first two terms form a positive definite quadratic function of (z,v).

Since b > 0 and ¥ is a first quadrant-third quadrant nonlinearity, the integral term is nonnegative. Hence,
V is positive definite. It is also radially unbounded since V{(z,v) > zT Pz + adv®.

(b)
V .= zT(PA+ ATP)z — 2:7 PBy — 2ad®vy + byp(C Az — CBy — dy)
< zT(PA+ ATP)z = 2:TPBy — 2ad(y — Cz)¥ + bWC Az — bCBy? — bdy? — -2—:31&(!!) = ky)
= 2T(PA+ ATP)z - 2:T(PB - }bATCT — adCT )y - (bCB +bd + %) ¥
= zT(PA+ ATP)z - 2:T(PB - w)v — w*
where

w = 1bATCT + adCT, —y=bCB+bd+2—:-d

Choose b such that v > 0. Suppose there are P = PT > 0, L and £ > 0 which satisfy
PA+AT™P = -LTL—¢P
PB = w-LT 4
Then

2T Pz~ 2TLT Lz + 22TLT \fyp — W
~g2T Pz ~ (2TLT — \/79)(Lz ~ J7¥) £ —e2T Pz

<
A

117



Hence, V is negative semidefinite.
V=0=2()=0=9pE)=0=>y(t)=0=>v(t) =0

Thus, by LaSalle's theorem, the origin is globally asymptotically stable. Now, by Lemma 6.3, the existence
of P, L, and ¢ satisfying the foregoing equations is equivalent to the strict positive realness of

Z(s) wT(sI—A)'B+ vy

ad [(C +nCA)sI — A)'B + % +n(d + CB)]

1

where n = b/2ad. By Lemma 6.1, we want Re[Z(jw)] > 0 for all w, that is,
1
P Re[(C +nCA)(jwl — A)"'B4+n(d+CB)] >0

Noting that

1

(1+72)C(sl — A)'B = C(sI ~ A)~'B +nsC E”sl!’”“'] 3

C(sI-A)"'B+4CB +nCA EI+ ;%A +-- ] B

(C+nCA)(sI - A)'B +7CB

and

. d
Re [(1 + Jwﬂ)j—w] =nd
we obtain

Re[(C +nCA)(jwl — A)™'B +5(d + CB)] = Re { (1 + jum) [C'(jwl -A B+ ,%] }
and the condition for absolute stability reduces to
% + Re[(1 + jun)G(jw)) >0, Yw e R
e 7.9 (a) From the block diagram, we have
E(s) = =Y (s) = kh(s) = ~[H(s) + K}V (6) = ~[H(s) + KU (s)

Hence, the system can be represented as the feedback connection of Figure 7.1 of the text with

1 s§+6+k(s+2)(s +3)
G =—-|H k| =
(s) s[ (8) + A] s(s+2)(s + 3)
(b) From the Popov criterion (Exercise 7.8), the system is absolutely stable if

1
B
To simplify the calculations, choose # = . Then

+ Re[(1 + jun)G(jw)] >0, Vw e R

kw? + 9k — 3

Re|(1 + jun)G{jw)] = RV

which is positive for k > §. Thus, we take k. = }.
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¢ 7.10
) ]

¥(a) = ;1; a®sin® @ do
0

sin®@ = [3(1 - cos20)]* = (1 ~ 3cos20 + 3cos® 20 — cos® 26} = § (1 - 3cos 26 + 2 + 3 cos4f — cos® 29)
The terms cos 28, cos® 26, and cos 48 integrate to zero over 0 to w. Thus

2 (™ 5a° 5q*
o= %= 7%
(2) -
¥Y(a) = —f a'sin® 9 48
ma Jjo
/si.n58 df = — lsin“écos&— ilsinBc:‘:sG— —8—cose
T5 15 15

Upon substituting the limit from 0 to x, the first two terms vanish and the third term gives (16/15). Thus

32a®
v = o

(3) We can write the given function as ¥(y) = k + A sgn(y). The describing function of the signum
nonlinearity is given in Example 7.6. Thus

Fla) =k+ i
na

(4) Fora < A, ¥{asinf) =0 = ¥(a)=0. For a > A, ¥(asin®) is given by

. _ {0, for0<8<f&n—f<b<nw
M“”‘”"{B, forf<b<nr-8
where 8 = sin~!(A/a). Thus |
/3 4B B [ A

@(a):aﬁ Bsm8d9=;r-5cos/5‘=1r—a~ —-?;2'-

(5) The given function can be written as ¥(y) = ¥1(y) + ¥2(y), where

_[o, fo<y<A _fo, f0<y<B
ww={iy-n aysa " www={ 5 {5}

1 and 42 are special cases of the function treated in Example 7.7. Using the result of that Example, we
obtain

¥y (a) = 0, fora< A4 ¥3(a) = 0, fora< B
T k-EN(S) fora>A’ TEYT —k+kN (%) fora > B

The sum ¥;(a) + ¥2(a) gives the desired describing function.

¢« 7.11 (1
) l—jw  1-w?~ 2w

CUw) = 5+ i0) ~ sl +?)
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_ _ 2
RelG(jw)] = ﬁz— Im(G (ju)] = w—(ll—If:-z-)-

w?’
Im(G(jw)] = 0= w =1, Re[G(j)] = -1
For ¢(y) = y°, we have ¥(a) = 5a*/8. The equation 1 — ¥(a) = 0 has a unique solution a = (%)* = 1.125.

There is a possibility of a periodic solution of amplitude close to 1.125 and frequency close to 1 rad/sec.
(2) The transfer function is the same as in part (1). The describing function is given by

0, fora<1
B(a) = { 2{1 — N{a)], for1<a<15b
2[N(a/1.5) — N(a)}}, fora> 15

By using Matlab, it can be checked that the equation 1 — ¥{a) = 0 has no solution. So, we expect that the
system will not have sustained oscillation.

(3)
. 1 _ (1-jw)t
Glw) (1+jw)d — (1+w?)e
_ 14 6(=jw) + 15(—jw)? + 20(—jw)® + 15(=jw)* + 6(—jw)® + (—jw)®
= . (1 +w?)®
_ 1-15w% 4 150 — P 4 j[—6w + 2003 — 6w
= 1+ )
Im[G(jw)] = 0= 6+ 200? — 6wd =0 = w? = 3 or w? = %
. 1 . 27
Re[G(53)] = 7y Re[G (j})] =~ o

From Example 7.6, we know that ¥(a) = 4/7a. For w? = 3, the equation 1+ ¥(a)Re[G] = 0 has no solution.
For w? = §, the equation has a unique root a = 27/16n. Thus, we expect that the system will have a
periodic solution with amplitude close 10 27/167 and frequency close to 1//3 rad/sec.

(4) _
jw+6 _ =36+ jw)(2 - jw)(3 = jw)  —w(24 + w?) ~ 5(36 — w?)

Jw(iw+ 2)(Gw + 3) w{d + w?)(9 + w?) 7w+ )9 + w?)
ImG(jw)]=0=36-w=0=2w=6

Re[G(j6)] = —1/30 and the equation 1+ ¥(a)ReG = 0 has the unigue solution a = 2/157. Thus, we expect
that the system will have a periodic solution with amplitude close to 2/157 and frequency close to 6 rad/sec.

(5)

Gliw) =

jw _ jw _ =w? + jw(l - w?)
—w - w4l 1-wi+jw . (1-u?)? +u?
Im[G(jw)=0 = w=1
Re[G(7)] = -1 and the equation 1+ ¥(a)ReG = 0 has the unique solution a = (8/5)!/%. Thus, we expect
that the system will have a periodic solution with amplitude close to (8/5)/¢ and frequency close to 1
rad/sec.
(6)

Giw) =

5(1+j4w)  _ 5(1+4jw)@ - jw) _ 5{4+ 15w?) + 1200(3 — w?)
Gw)?(2+jw)r T —4l(d+7)? —4dw?(4 + w?)?

Im[Gjw)] = 0= w@B-w)=0=w=1v3

Gljw) =
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Re{G(jv/3)] = —5/12. The equation 1 + ¥(a)ReG = 0 yields ¥(a) = 12/5.

4 12 10
‘I’ =2 — DT — - J—
(a) +1m 5=>a =

Thus, we expect that the system will have a periodic solution with amplitude close to 10/x and frequency

close to 1 rad/sec.
(7) From part (6), the equation 1+ ¥(a)ReG = 0 has the unique solution a = (§/5)'/4.

¥ 0, fora<1
@=1 £/i-(3)?, a1

wa a

¥(e) < 4/ma. Hence, ¥{a) =12 /5 has no solution. Thus, we expect that the system will not have sustained
oscillation.
(8) From part (6), the equation 1 + ¥(a)ReG = 0 has the unique solution a = (8/5)'/%. The describing
function is given in the solution of part (2). By using Matlab, it can be verified that ¥{a) = 12/5 has no
solution. Thus, we expect that the system will not have sustained oscillation.
(9)

1 1-3w?~jw(d—w?)
1+ jw)® ~ (14+w?)3

Im{G(w)] =0 = w@B-uw?)=0 = w=V3

Re[G(jv/3)] = —1/8. The equation 1 + ¥(a)Re[G] = 0 yields ¥(a) = 8. From Example 7.6, the describing
function of the signum function is ¥{a) = 4/(xa). The equation ¥(a) = 8 has the solution a = 1/(2w).
Thus, we expect that the system will have a periodic solution with amplitude close to 1/(2r) and frequency
close to /3 rad/sec.

(10) From part (9), ¥(a) = 8. From Example 7.7, the describing function of the saturation function satisfies
¥(a) < 1. Thus, ¥(a) = 8 has no solution and we expect that the system will not have sustained oscillation.

Gljw) =

» 7.12 With reference to Section 1.2.4, represent the negative resistance oscillator in the z-coordinates
2y =z3, #& =—z ~ h(z)

where h(v) = —v + v® — }v5. including the —v term with the linear system, we can represent the system in
the form of Figure 7.1 with

=[5 1] o= (2] emto 11 v

—w? + jw(l - w?)
A= w?)? +

s
s2-g4+1"

G(s)=C(sI - A)'B = Gliw) =

ReG(j)=-1 = ¥(a)=1
On the other hand,
- _2__ ” H 3 1 . 5 . _ 302 i.'l.‘l
¥(a) = ’mfo [(asm&) - g(asmﬂ) ] sind df = - ~ 5

The equation 3—:: - 931 = 1 has two solutions: a = 2 and a = /2. Thus the harmonic balance equation
has two solutions: (ws,a,) = (1,2) and (w,,a,) = (1,v/2). We expect that the system will have two periodic
solutions, the first one has amplitude close to 2 and frequency close to 1 rad/sec, and the second one has
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amplitude close to /@ and frequency close to 1 rad/sec. The phase portrait (Figure 7.19) shows that the
system has two limit cycles. The amplitude of z; in the inner limit cycle is about 1.4 while that of the
outer limit cycle is about 2. These numbers correlate reasonably well with the estimates of the amplitude
of the first harmonic obtained using the describing function method. From Figure 7.20, we can estimate
the frequency of oscillation by 0.9657 rad/sec, which is close to the frequency of oscillation predicted by the
describing function method.

Figure 7.19: Exercise 7.12. Figure 7.20: Exercise 7.12.
e 7.13
Gliw) = 2bjw _ =200 + j2hw(l - w?)
Tl-wi—jbw (1 —wd)E + b

Im[G(jw)] =0 = w=1
Re[G(j)] = —2. The equation 1 + ¥(a)ReG = 0 yields ¥(a) = L. The describing function of the saturation
nonlinearity is given in Example 7.7. By using Matlab, it can be verified that ¥(a) = 1 has a solution
a = 2.47. Thus, we expect that the system will have a periodic solution with amplitude close to 2.47 and
frequency close to 1 rad/sec. To confirm this conjecture, we apply Theorem 7.4. The saturation nonlinearity
satisfies the slope restriction witha=0and 8 = 1.
1 _1-¢?—jhw 1 . (1-u?
GGw) -~ w2 T\ o

The inverse Nyquist plot is a vertical line through the point (~0.5,0). The critical circle has its center at
the point (-0.5,0) and its radius is 0.5. The inverse Nyquist plot intersects the critical circie at the points
(-0.5,-0.5} and (-0.5,0.5). The frequencies at these two points are given, approximately, by w = 1 — b/2
and w = 1 + /2. So, we limit our analysis to the frequency band w € [1 - b/2,1 + b/2].

a+p + I | [1-w?
2 G(w)| | j2bw
For w > 1, the right-hand side is a monotonically increasing function of w. Hence, p(w) is calculated at k = 3
to be

8w? -1
plw) = ~—5~

For1<w<1+4+b/2,
9(1+5/2)°~1 4

4 4 (1+9/8
» PSS “garem S ( g b/2)
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Thus, for small b, p(w) is of order O(1/b). Consequently,

(0.5 3 _
p(w)—05 16
The uncertainty band will be very narrow for sufficiently small b. It can be verified that the uncertainty

band defines a complete intersection. Theorem 7.4 confirms that there is a half-wave symmetric periodic
solution. The amplitude of oscillation will be O(b) close to 2.47 and the frequency of oscillation will be O(b)

close to 1 rad/sec. .

o(b)

o(w) =

o 7.14 (a) ¢ € [0,}]. Since G(s) is Hurwitz, we apply case 2 of the circle criterion. From the Nyquist plot,
we see that Re[G(jw)] > -0.085. Thus, the largest b is b = 1/0.085 = 10.76.

(b) The Popov plot lies to the right of a line having slope = 1.2 and intersecting the real axis at —0.06.
The slope corresponds to ¥ = 1/1.2 = 0.833. Since the eigenvalues of A are at —1 and -2, the condition
(1 + Xy) # 0 is satisfied. Also, since G(s) has relative degree higher than one, CB = 0. Hence, the
condition 2 + 2ykCB > 0 is satisfied for any 4. Thus, the choice v = 0.833 is acceptable and the largest b is
b=1/0.06 = 16.67.

(c) ¥ is a special case of the piecewise linear function of Example 7.7 with sy = b, 3o = 0, and 8 = 1/b. The

describing function is
26 | 1) 1 1)?
'} = = — —_ —
(a) n [sm (ab) + ab ! (ab)

(1 -w? = 2jw)(4 - w? — 4jw)

GUw) = ——Fror@E+ o)
ImGiw) = —2C =3 g4 u=va

()
1+ ¥(a)Re[G(jV2)) = 0= ¥(a) =18

Because 1(a) starts from b at a = 0 and decreases after a = 1/b, the equation (a) = 18 has a solution if
b > 18. The frequency of oscillation will be close to w = V2.
(d) For b = 10, the slope restrictions are a = 0 and 8 = 10. The inverse Nyquist piot and the critical circle
are shown in Figure 7.21. The inverse Nyquist plot is plotted only for w € [0, 2]. Tt keeps moving farther
awa:ﬂ for higher frequencies. Because the inverse Nyquist plot is always outside the critical circle, there is no
oscillation.
(e) For b= 30, the slope restrictions are o = 0 and 8 = 30. The inverse Nyquist plot and the critical circle
are shown in Figure 7.23. The error circle are plotted for the following points:

w 1/G(jw) o{w)
13 | (-15.1139,2.418) | 0.7536
1.38¢ | (-17.3589,0.589) | 0.5911
1.436 | (-18.555,-0.535) | 0.5231
1.45 | (-18.912,-0.8917) | 0.5048
1.5 (-20.1875,-2.25) | 0.4456

The circles tangent to the real axis correspond to w = 1.389 and w = 1.436. Thus, w; = 1.389 rad/sec
and wy = 1436 rad/sec. The boundaries of the band of uncertainty intersects the real axis at —17 and
—18.75. By plotting ¥(a) versus a, the values of a; and a, are determined as a; = .0649 and a; = 0.0721.
It can be verified that the regularity conditions are satisfied. Therefore, there is oscillation of frequency
w € [1.389,1.436] and the amplitude of the first harmonic of the output is a € {0.0649,0.0721]. At w = 1.389

and a = 0.0721, we have

w [l 2 x 0.5911 x 0.072112
—-f yg(t)dtg[ X002 ~gx 107
w 0 30
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The energy content in the first harmonic is

w 2% fw
= / a’sin?(wt) dt = a® = (0.0721)% = 0.52 x 102
0

the ratio is 15.38 x 10~4. Taking the square root, the percentage of the higher harmonics to the first one
is 3.9%. The simulation is shown in Figure 7.22. The simulation shows a period of oscillation of about 4.4
sec., that is, w as 1.428 rad/sec. The amplitude of oscillation is about 0.068. These results are consistent
with the ones we obtained using the describing function method.

10 . . . . 70'1
0.05
- 0
-0.05
0.1
5 10 15 20
t
Figure 7.21: Exercise 7.14. T Figure 7.22: Exercise 7.14.

¢ 7.15 {(a) The nonlinearity belongs to the sector [0,5]. By using Matlab to find the Nyquist plot of
G(jw), we found that min Re[G(jw)] = ~1.1638. Hence, the origin is globally asymptotically stable for
b < 1/1.1638 = 0.8593. :

(b) By using Matlab, we found that the Popov plot intersects the real axis at —0.5564. With v = 1/1.1 we
can draw a line of slope 1/ which passes through the point (~0.5564,0) and is to the left of the Popov piot.
The choice 4 = 1.1 satisfies the condition 1 + 4 3 0 since A = —1 or —=2. The condition 1 +vkCB > 0 is
satisfied for any v since CB = 0 (the transfer function has relative degree two). Thus, the origin is globally
asymptotically stable for b < 1/0.5564 = 1.7972.

(c) ¥ is a special case of the piecewise linear function of Example 7.7 with s; = b, s2 = 0, and & = 1/b. The

describing function is
_2. (1) 1 1\?
Vo) =3 [“‘“ (5)*7.3 1‘(5)

The harmonic balance equation is

1+ GGw)¥(e) =0 « 5(;—&.:) +%(a)=0

116[2(1 ~ 2?) + ju(5 ~ w?)] + T(a) = 0

The imaginary part yields w? = 5; then the real part yields ¥(a) = 1.8. Because %(a) starts from b at
a = 0 and decreases after a = 1/b, the equation (s} = 1.8 has a solution if b > 1.8. Thus, the describing
function method predicts that there will oscillation for b > 1.8. The frequency of oscillation will be close to

w =5 = 2,2361.
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Figure 7.23: Exercise 7.14.

¢+ T.16
(=) , (1 - 3u?) + jw(w? - 3)
Glw) = A+

ImGjw) =0 = w=+v3

Re G(jv3) = — % = ¥a)=8
With s; = 10, 82 = 0 and 6 = 0.1, the describing function is given by

¥ = 2 [m. (L) + - (&)

Plotting ¥(a) using Matlab, we determined that ¥(a) = 8 corresponds to 2 = 0.146. Thus we predict that
there is an oscillation of frequency close to v/3 rad/s and amplitude of the first harmonic close to 0.146.
(b) :
1 ——
G{jw)
The inverse Nyquist plot is shown in Figure 7.24, together with the critical circle and the band of uncertainty.

It defines a complete intersection with w; = 1.699, wp = 1.76, @y = 0.139, and a2 = 0.1535. Thus, by
Theorem 7.4 we conclude that there is an oscillation of frequency w € (1.699, 1.76) and amplitude of the

first harmonic a € (0.139, 0.1535}.
(c) Figure 7.25 shows the inverse Nyquist plot with three critical circle corresponding to k = 4, 7.5, 10. With

1~ 3w? + jw(3 —w?)
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k = 4, the inverse Nyquist plot lies outside the critical circle. It follows from the first part of Theorem 7.4
that there is no oscillation. This however is a conservative estimate because we can use the second part of
the theorem to conclude that there is no oscillation if the inverse Nyquist plot enters the critical circle but
for each point inside the critical circle the error circle does not intersect the real axis. The critical circle with
k = 7.5 captures this situation. Therefore, we conclude that the largest slope for which the system does not

oscillate is about 7.95.

Figure 7.24: Exercise 7.16.

¢ T.17 (1)
0w—1) _ =2j(1=jw)®  —dw—2j(1 —w?)
(wPw+1)  BA+wd) (14 w?)
' Im{G(jw)1=o'=>'u=1 '

‘Re[G(j)] = —2 and the equation 14-¥(a)Re[G] = 0 yields \]?(a.) #. The describing function of the saturation
nonlinearity is given in Example 7.7. The equation ¥(a) = ha.s a unique solution a = 2.47. Thus, we
expect the system to have a periodic solution with amplitude close to 2.47 and frequency close to 1 rad/sec.
To confirm this conjecture, we apply Theorem 7.4. The uncertainty band defines a complete intersection.
The sketch in Figure 7.26 shows the details of the complete intersection. The two circles (almost) tangent
to the real axis have w; = 0.948, ¥(a;) = 0.4255 and w; = 1.032, ¥(az) = 0.5494. From the describing
function of the saturation nonlinearity, we find that ¥(a) = 0.4255 gives a = 2.933 and ¥(a) = 0.5494 gives
a = 2.238. Thus, Theorem 7.4 confirms that there is a half-wave symmetric periodic solution with frequency
in the range {0.948,1.032] and the amplitude of the first harmonic is in the range [2.238, 2.933].

(2) From Example 7.14, we know that the harmonic balance equation has a solution with w = 2\/_ 2 and
¥(a) = 0.8. The inverse Nyquist plot is shown in Figure 7' 21 of the text. For the nonlinearity y(y) = } siny,
the slope restriction is satisfied with a = —5 and B = 3. Therefore, the critical circle is centered at. the
origin and has a radius of 0.5. Neither the inverse Nqust plot nor the uncertainty band enter the critical
circle. Hence, by the first part of Theorem 7.4, we conclude that there is no oscillation.

(3) From Example 7.14, we know that the harmonic balance equation has a solution with w = 2v/2 and
¥(a) = 0.8. The inverse Nyquist plot is shown in Figure 7.21 of the text. The nonlinearity satisfies the slope
restriction with & = ~1 and B = 1. Therefore, the critical circle is centered at the origin and has a radius

Glw) =
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Figure 7.25: Exercise 7.16.

g 0-05 . o= 0.948
e
§ o
=4
g -0.05} o =1.032
- 1/G{j )
-06 -0.5 -0.4 -0.3
Real Axis

Figure 7.26: Exercise 7.17(1).

of 1. The describing function is given by
1
¥@)=1¢ ($)sin™! (2) + LV1-(2/a)? -1 | 2<a<3
ifsint (2) -sin7 ()] + EVI- QP - BVI-B/af+1  e23

1t is shown in Figure 7.27. The equation ¥(a) = 0.8 has two roots at a = 2.48 and a = 12.47. Thus, we
expect that there are two periodic solutions, one with amplitude close to 2.48 and frequency close to 2v/2
rad/sec. and the other with amplitude close to 12.47 and frequency close to 2v/2 rad/sec. Next, we apply
Theorem 7.4. It is clear from Figure 7.27 that ¥’(a) is different than zero at the roots a,. Thus, all the
conditions of Theorem 7.4 (case 3) are satisfied and we confirm the existence of the periodic solutions. By
calculating and plotting the uncertainty band, it can be seen that the boundaries of the band intersect the
real axis at —0.6481 and —0.9519. The frequencies of the error circles closest to the real axis are w = 1.75
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and w = 2.905. Using the graph of ¥(a), the set I' corresponding to each solution is given by
) = {(w,a) | 2.75 <w < 2.905, 2.1606 < a < 2.803}
T, = {{w,a) | 2.75 < w < 2.905, 6.7065 < a < 52.8815}

0 S 10 15
a

Figure 7.27: Exercise 10.42.

{4) The harmonic balance equation has the solution w = +/3 and ¥{g) = 1. For the given nonlinearity,
¥{a) = 1 yields the unique solution a = 0.8165. Application of Theorem 7.4 succeeds and gives

T = {{(wsa) | 1.711 < w < 1.749, 0.7746 < a < 0.8485}
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Chapter 8

e 8.1 As in the proof of Theorem 8.1, take v(y,w) = V(y) + vwT Pw. Then

v< %[A;y + o (v, h(y))] ~ Zﬁ

Hence, the origin is stable.

llwllz <0

e 8.2 From Theorem 8.2, we know that asymptotic stability of the origin of the reduced system implies
asymptotic stability of the origin of the full system. The opposite statement can be proved by contradiction.
Suppose the origin of the full system is asymptotically stable but the origin of the reduced system is not so.
Asymptotic stability of the origin of the full system implies its stability, which in turn implies stability of
the origin of the reduced system. If the origin of the reduced system is stable but not asymptotically stable,
then there is a bounded solution y(¢) (with ]ly(0)]| arbitrarily small) which does not converge to zero as ¢
tends to infinity. Then, the corresponding solution (y(t),0) of the full system does not converge to zero,
which contradicts asymptotic stability of the origin of the full system.

¢ 8.8 If go{y,0) = 0, then h(y) = 0 satisfies the PDE (8.8). If g,(y,0) = 0 and A, = 0, the reduced system
is § = 0. The origin of the reduced system is stable and the Lyapunov function V(y) = y7y satisfies the
condition of Corollary 8.1. Thus, the origin of the full system is stable.

o 8.4 In Example 8.1, 4; = 0 and a = 0 yields g1(y,2) = =b(yz + 22) and g2(y,2) = b(yz + 2%). Thus,
g1(3,0) = g2(y, 0) = 0 and the conclusion follows from the previous exercise.

« 85
(a) The function f(Za,Zs) can be expanded as
fo(a, zs) = g;fi-(o, 0)za + g—mf—:(o, 0)zs + f5(Ta,2s) = gi: (0,0)z4 + f3(Za, 2s)

where f3(2o,2s) vanishes at (0,0) together with its first partial derivatives. Since fy{%4,0) = 0 in the
. - 8 - - _ fa(-"m 3#)
neighborhood of zo = 0, §2(0,0) = 0. Let 7 = [ iy ] and f(z) = [ Azt o2 70) ] Then

ﬂm=[§£¢(o,0) 34(0,0) }z [35:(0,0) gg:(o.o)]
o 2(0,0) 4+ 28(0,0)

If the origin of £, = fs(z,,0) is exponentially stable, then (from the Theorem 4.15) the matrix g&(ﬂ, o)
is Hurwitz. Consequently, the matrix §£(0) is Hurwitz and the origin z = 0 is an exponentially stable
equilibrium point of the full system.

0 Ap
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(b) In this case, the matrix gﬁ(o, 0) has some eigenvalues with zero real parts, with the remaining eigenval-
ues (if any) having negative real parts. By a linear change of coordinates, the full system can be transformed

into the form

m o= FAm+aln,mon)
'}2 F2W2+G236+92(’ha’72,$b)
Ty = Apzy + folm,me, 7}

with F; having all eigenvalues with negative real parts and F; having all eigenvalues with zero real parts.
Moreover, the functions ¢ and ¢; vanish at (0,0, 0) together with their first partial derivatives. By assump-
tion, the origin (m, 72} = (0,0} is an asymptotically stable equilibrium point of the system

m=Fm+q(mm0), h=~FAy+eihmn)
Let 72 = my(m ) be a center manifold for this system. Then, m, satisfies the PDE

%’[Fxm + o1 (m,m2{m), 0)) = Fama(m) + go(m, 72(m), 0)

From Corollary 8.2, we conclude that the origin m; = 0 is an asymptotically stable equilibrium point of the
reduced system
th = Fim + q(m,m2(m),0)

Consider now the full system. The center manifold for the full system is the pair
2 =ha(m), Zp=hi(m)
that satisfies the PDE’s

E1Fm + 91, ha(m), by ()] = Fohalm) + Gaha(m) + ga(m, ha(m), ()

B Fim + g )y by ))] = Avha(m) +fo(m, (), )

It can be verified that these equations are solved by hz(m) = #2(m) and h;(m) = 0. Thus, the reduced
system (of the full problem) is
= Fim + qu(m,m(m}),0)

Since the origin of this system is asymptotically stable, we conclude from Theorem 8.2 that the origin of the
full system is asymptotically stable.

0 0

8.6 (I)A=§£g=o= [0 -1 ] Take y =z, and 2 = z,.

§=-2) i=-z4y +yz

N (W) =W @)~k @) + h(y) - v* —yh(y) =0, A(0)=0, K'(0)=0

Try h{y) = O(lyf*). It yields the reduced system j = —y20(|y|*). We cannot reach any conclusion using
this equation. Next, try h(y} = hay® + O(|y|?). Substituting this expression in the center manifold equation
and matching the coefficients of y2, we obtain h; = 1. The reduced system is

g=—-y*+O(yl®)
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The origin of this system is unstable. Hence, the origin of the full system is unstable.

(2) A=Y 090

P P ] Take y = z; and z = z4.

7 =ay® - 22, im—z+y +yz

N (k) = K (y)ley® — h*(y)] + h(y) - ¥* -~ yh(y) =0, A(0) =0, K'(0) =0
Try h(y) = O(Jy}?)- It yields the reduced system .

y=ay® + O(ly)*), a#0

The origin of this system is unstable. Hence, the origin of the full system is unstable.
(3)
0 -1 0
=11 0 0
=0 0 0 -1

h=-ya+wmz, o= Vi +y2z, z=-z-— (yf +y§) +2?

i
A=5;

Takey=[z: z2 ¥ and z = z3.

N(h(y)) = %E—mmh(ym%[y; +42h(y)]+hly)+2+13~H2(y) = 0, A(0) =0, %w) 0, %(o) =0

Trying h(y) = O{||y||*) we reached no conclusion. So we take

h(y) = ¢(v) + O(llyll®), where #(y) =yTPy = puuy? + 2p12y1v2 + ooyt

o¢ d¢
B D11t D122 B2 Pr2th P22Y2

Substituting these expressions in the center manifold equation and matching the coefficients of y?, 132, and
y2, we obtain

Pa+1+2ps =0, —2p11+2p22+2p12=0, —2p2+paa+1=0
whose solution is p11 = pg; = —1 and p12 = 0. Hence we have h(y) = —(y% + ¥2) + O(||y||®) and the reduced
system is

= ~y2— (] +93) + OUWI), 92 = w1 — 9207 + 42) + O(lyll*)

Try V(y) = 3(v? + v3) as a Lyapunov function candidate.

V(y) = ~(uf +13)% + Oligl*)

Hence V(y) is negative definite in some neighborhood of the origin and the origin is asymptotically stable.
Thus, the origin of the full system is asymptotically stable.

[0 o

(4) A= g£:=o_ 0 -1 ] Take y = ) and z = z,.

y=y%2, i=-z-4°
N(h(y)) = -h'(y)y*h(y) ~ h(y) —3* =0, K(0)=0, A'(0) =0

Try h(y) = O(Jy|?). It yields the reduced system § = ¥*0O(|y|?). We cannot reach any conclusion using this
equation. Next, try A(y) = hoy® + O(jy|®). Substituting this expression in the center manifold equation and
matching the coefficients of 2, we obtain hy = 0. Try A(y) = hyy® + O(ly|*). Substituting this expression
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in the center manifold equation and matching the coefficients of 3, we obtain hs = —1. The origin of the
reduced system
¥=—y*+0(ly°)

is asymptotically stable. Hence, the origin of the full system is asymptotically stable.

(5) A=Y -

=10 -1 } Take y = z; and z = z,.

y=y2, i=-z-y"+2f

Nh@) =K@+ hy) +v* -2 =0, k(0) =0, K'({0)=0

It can be seen that A(y) = —y* satisfies this PDE. The origin of the reduced system §y = —y7 is asymptotically

stable. Hence, the origin of the full system is asymptotically stable.

(6)A=§;’-z_u=[-01 g].Takey=mgandz=zl.

=y z+y-1), i=-z2-y +yiz+y-1)

N(h(@) = KR +y = DI+ k() —* () +y -1 =0, K0)=0, K(0)=0

Try ¢(y) = 0. Then h(y) = O(jy[*) and the reduced system is ¥ = ~3° + O(|y|*). The origin of this system
is asymptotically stable. Hence, the origin of the full system is asymptotically stable.

0 1
(MA= gﬁz-_—nz[ﬂ -1 }.Ta.key=1:1+x2a.ndz=zz.
. {y-2)® . (y—2)°
y_al+(y-z)2' = z+al+(y-z)2

- 3 -
W) = W) o (UL g hy) o LB o, )=, (o) =0

Try ¢(y) = 0. Then h(y) = O(jy|®) and the reduced system is

3
. Y 4y _ 3 4
y—a—-—1+y2+0(ly! ) =ay® + O{ly|")

The origin of the full system is asymptotically stable if @ < 0 and unstable if ¢ > 0.
(8)
-2 -3 1
= 1 1 0
z=0 0 0 0

v=(n-y? fH=-22-3n+y¥+(n-v)% LH=zn+z

M (R = B @)[h1(y) — ¥1° + 2h1{y) + 3ha(y) - ¥ = [Aa(y) - 3]
Na(ha(y)) = Ra(@)[Ra(y) — ¥)° — Ra(y) — hofy)
hi(0) =0, RI{(0)=0, i=1,2

. 9
A—&r

Ty + I3
T2 —z3 |

Ta.kgy::c;;a.ndz:[

Try ¢(y) = 0.
M(0) = O(lyl*), N2(0) =0

The origin of the reduced system § = y2 + O(|y|?) is unstable. Hence, the origin of the full system is unstable.

132



0

e 8.7 A=% oz[g _1].Takey=x1 and z = z4.
=

v=yzr+ay’ +byz?, i=-z+cy?+dy’z

N(A@) = k' W)vh@) + ay® + byh? (¥)] + h(y) — v — dy*h(y) = 0, k(D) =0, h'(0) =0

We reach no conclusion by trying k(y) = O(ly|?). So we take h(y) = hyy® + O(jy]®). Substitution in the
center manifold equation and matching of the coefficients of 2 yield hy = ¢. The reduced system is

y=(e+cy’ +0(ylY)
a+c>0 = The origin is unstable

a+ ¢ <0 = The origin is asymptotically stable

When a + ¢ = 0 we can reach no conclusion. we seek a higher-order approximation of k(y). We take
h(y) = cy* + hay® + O(ly|*). Substitution in the center manifold equation and matching of the coefficients
of 33 yield k3 = 0. So we take h(y) = cy? + hqy* + O(|y)®) and repeat the process to obtain hy = cd by
matching the coefficients of y. The reduced system is

= (a+ o)y’ + (cd+bP)y® + O(lyl®) = (ed + b)® + O(Jyl°)

since ¢ + ¢ = 0.
: a+c=0and cd+bc® >0 = The origin is unstable

a+c=0and cd+bc* <0 = The origin is asymptotically stable

If a + ¢ = ed + bc®> = 0, we cannot reach a conclusion and we seek a higher-order approximation of A.
Proceeding as before, we obtain

h(y) = ey® + cdy® + cd®y® + O(ly|")

The reduced -system is
¥ =(a+ o)y’ + (cd + bc®)y® + (ed® + 2bcd)y” + O(|yl®) = —cd®y” + O(ly[®)
a+c=cd+bc® =0and ed? <0 = The origin is unstable

a+c=cd+bc? =0and cd® >0 = The origin is asymptotically stable

The only case left isa + ¢ = cd+ b2 = ¢d® = 0. If ¢ = 0, we have a = 0 and h(y) = 0 solves the center
manifold equation exactly, resulting in the reduced system 3 = 0. If ¢ # 0, we must have b = d = 0 and
h{y) = cy® solves the center manifold equation exactly, resulting in the reduced system g = 0. In either case,
the conditions of Corollary 8.1 are satisfied; hence, the origin of the full system is stable.

0 0
0 -1

—

z=0

* 8.8 A=§£ ].Ta.key:a:landz-—-xz.

¥ = ay® + 4%z, i=—z+ 2t +zy-¢°
N(h(y)) = ¥ (@)ay® + y*h(y)) + Aly) — K¥(y) — yh(y) +3° = 0, K{0) = A'(0) =0
Try A(y) = O(|yl?). The reduced system is
¥ = ay® + O(ly)*)

a > 0 = The origin is unstable
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a < 0 = The origin is asymptotically stable

If @ = 0, we reach no conclusion. We take h(y) = hoy* + O(|y|®). Substituting A(y) in the center manifold
equation and matching the coefficients of 3%, we obtain hy = 0. We take h(y) = hsy® + O(|y|*) and repeat
the process to obtain h3 = —1. The reduced system is

=0’ —1* +O(lyl®) = —v° + O(lyl®)

The origin is asymptotically stable.

8
¢ 8.9 A=3£

0

z=0

=[0 _01 ].Takey:zl and z = z3.

y=ayz—y%, i=-z+byz+cy’

N(h(y)) = b ()layh(y) - ¥°) + h(y) — byh(y) —cy® =0, A(0) =0, K'(0)=0

We reach no conclusion by trying h(y) = O(ly[?). So we take h(y) = hoy® + O(Jy|*). Substitution in the
center manifold equation and matching of the coefficients of y* yield hy = ¢. The reduced system is

§ = (ac = 1)y’ + O(lyl")
ac—1>0 = The origin is unstable

ac—1< 0 = The origin is asymptoticaliy stable

When ac — 1 = Q we cannot reach a conclusion. We seek a higher-order approximation of h(y). We take
h(y) = ey® + hay® + O(|yl*). Substitution in the center manifold equation and matching of the coefficients
of y® yield hg = be. The reduced system is

§ = {ac— 1)y + bacy® + O(|y|*) = &v* + O(w®)

If b # 0, the origin is unstable. The only case left is the case ac = 1 and & = 0. In this case, the center
manifold equation is solved exactly by A(y) = cy®>. The reduced system is = 0. Its origin is stable and the
Lyapunov function V(y) = y° satisfies the condition of Corollary 8.1. Hence, the origin of the full system is

stable.

e 8.10 In the neighborhood of the origin, V' (z) is positive definite and V(z) is negative definite. Hence, the
origin is asymptotically stable. To show that G is exactly the region of attractior, we need to show that

z{0)€ G = z(t) +0ast o0 and z(0} g G = z(t) A 0ast 2 o0

Let z(0) € G. Then V{z(0)) < 1. Choose ¢ > 0 such that V(z(0)) < ¢ < 1. Consider the set 2 = {z €
G | V(z) < ¢}. Qs in the interior of G. Moreover, (1 is bounded since lim,;) 400 V{z} =1 and ¢ < 1. Qs

positively invariant since V(z) is negative definite. For z € G, we have
Viz)=0= h(z)[1-V(z))=0=>h(z)=0=2=0

where we have used the fact that 1 — V{z) > 0 for all z € G. Thus, by LaSalie's theorem, 2(t) — 0 as
t — oo. Now, let z(0) € G and suppose z(t) = 0 as ¢ ~ 0o. Then z(t) must enter the set G. Hence, there
are finite times #; and 3 > t; such that z(#;) € G and z(t) € G for all ¢t € {¢;,13]. Let W(z) =1 - V(z).

W(z) = ~V(z) = h{z)(1 - V(z}) = h(2)W (z)
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v aw

t h{z(s)) ds

w, W "
Wzt) = Wialto))eho "= #
1-V(elto)) = [1-V(z(t)e o™= %

Take ¢t = {3 and let 45 —+ #;.
lim LHS. = tlin} 1-V(z(t))] =0 and lim R.H.S.>0 Contradiction
o—h R

Thus if z(0) € G, z(t) # 0.

e B.11 Let
G={zx€R?| —a; <z < b}

Using the hint, (8.17) takes the form

OW: aW. W,
(BT: + g1(z1)Wi{z )) Wa(za)h(z1) + (-5;5”’1 (z1)g1{z1) — B:cll Wa(z2)g. (-'32)) =0
The equation is satisfied by W, and W, which satisfy
OW. iliZ
?11 = —gl(zl)Wl (Il), and ?: = ’92(32)W2(I2)

Thus, equation (8.17) is satisfied with
31 F3
Ve =1-em (- [ alo) do- [7 o) da)

The function V{z) has the properties: V{0) =0, 0< V(z) < 1l forallz € G, V(z) = 1 as z — 8G.
V(z) = —g1(z1)h(z1)[1 - V()] < 0
All the conditions of Zubov’s theorem are satisfied except that V(x) on only negative semidefinite.
V=0 = g@)hiz))=0 = 71 =0
{8} =0 = go(za(t)) =0 = x(t) =0
Hence, by application of LaSalle’s theorem (to the set &) and Zubov’s theorem, we conclude that G is the
region of attraction.

¢ 8.12 The system is a special case of the one treated in the previous exercise with k3 (z;) = 21, g1(21) =
tanz,;, and g2(z3) = x2. It can be verified that all the conditions of the previous exercise are satisfied in the
set G = {z € R? | |z1] < §}. It follows from the previous exercise that G is the region of attraction.

e 8.13 Since {1 is positively invariant and every trajectory in {) approaches the origin as ¢t — oo, every point
in {} is connected to the origin by an arc. Consequently, any two points in ) are connected by an arc that
is formed by connecting the two arcs that connect them to the origin. This shows that £ is connected.

e 8.14 Let ¢ = minzcap V(z). Then 2, = {V{z) < ¢} is an estimate of the region of attraction. We have

. 2 2 . 2 2
min zi+zst=1 min i +z51t=1
zg=1;0$:¢152{ p+agt=1, zz=-—1;—25:n$0{ 1+ 23}

, 2 o ] , . 1
min T Int = r — 1 -1
=1—=:=1;053152{ 1+ 22} ogﬁz{zi +(z1 - 1)} =3
and 2
. 5 _ \ . 1
m Ty + 23 =  min 7 +1)2) =1
z‘_"’:—lli—zﬁhso{ 1+ %2} —2S=150{11 +(z: + )%} 2

Hence ¢ = § and the region of attraction is estimated by {z € R? | z + z3 < }}.
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e 8,15
(a) Using V(z) = 52} + 2x,22 + 222, we have
V(z) = (101 + 225)z0 + (221 + 4z2)[—21 — 22 — (222 + T2 )(1 ~ 23)]
= —~22% 4 dxyz5 — 222 — 2(x;1 + 225)%(1 ~ 23)

For |z2| £ 1, we have '
V(z) € ~2(z? — 22123 + 23) = —2(21 — 24)2 <0

V(x) =0 = 5(0)—z{) =0 2> 24(t) —22(8) =0 = 3z2(2)(2 —2%(1)) =0 =2 z(t)=0
Hence, by LaSalle’s Theorem (Corollary 4.1), we conclude that the origin is asymptotically stable.

(b) Notice that V(z)} < 0 for all z € §. To show that S is an estimate of the region of attraction we
need to show that S is positively invariant. The boundary of S consists of four pieces, as shown in Fig-
ure 8.1. The boundaries BC and DA are parts of the Eyapunov surface V(z) = 5. Since V(z) < 0, the
trajectories cannot leave S through BC or DA. To show a similar property for the boundaries AB and CD,

notice that

d d
—13 = 2%2d2 = «222(Zy + 23) — 272(2y + 222)(1 ~ 23), —z2 = —2z5(1; + 23)

It can be easily seen that the right-hand side is nonpositive on the boundaries AB and CD. Thus, the
trajectories cannot leave S through AB or CD. Hence, § is positively invariant. It is also compact and

V(z) <0in §. Thus, by LaSalle’s theorem, all trajectories starting in S must approach the largest invariant
set in {x € § | V(z) = 0}. It is clear from part (a) that the largest invariant set is the origin. Hence, S is

an estimate of the region of attraction.

X,
-0.5{V(0) = 5\ ' 1
-1

D G

=15

-1 [ 1
Figure 8.1; Exercise 8.15.
« 8.16
£ =Ty, Ty=~22— (21 -7}
Consider the Lyapunov function candidate
Viz) = 3zl + fon (v ~ %) dy = 323 + 27 — Lzt

V(z) is positive definite in the region |z;]| < vZ.

V(I) = (3’-‘1 - I?)Iz +Iz[—$2 - {.’.!71 — x%)] = -;cg
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Moreover _
Vi) =0= 22(t) = 0= 3 {t) - ::f(t] =0 n{t) for iz <1

Hence, all the conditions of Corollary 4.1 are satisfied in the domain D = {|z;| < 1}. We conclude that
the origin is asymptotically stable and {2, = {z € R? | V(2) < ¢} is an estimate of the region of attraction,
provided c¢ is chosen small enough to ensure that £, is compact and Q. C D . The condition Q. C D is
satisfied by choosing ¢ < ;. For any 0 < ¢ < 1, the surface V(z) = c is closed. Hence, 2, with 0 < ¢ < iis
an estimate of the region of attraction. Equivalently, we can estimate the region of attraction by the open

set {z€ R*|V(z) < 1)

¢ 8.17 Sinee V(z) is negative, the vector field must point to the inside of the surface V(z) = c. Therefore,
the directions (2} and (3) are possible, while (1) and (4) are impossible.

e 8,18 (a)
0=z5, O0=—zy—sinz; — 2sat(z; + zz)

Hence

sinz; + 2sat(zy) =0=z, =0
The origin is the unique equilibrium point.
(b)

i

_[To 1
oz =c L3 -3
The eigenvalues of A are ~3/2 % j1/3/2. Hence, 4 is Hurwitz and the origin is asymptotically stable.
(<)

g Ry
2=0 —cosr -2 -=1-2

o6 = o[- sinz; — 2sat(c)] < |o| — 2jo| = |, for |o|>1

(d)

Viz) = (2 + sinz))z2 + z2{—z3 — sinzy — 2sat(z; + 2]
-322 <0, forlo] <1

The set M. is closed and bounded. Its boundary is formed of four parts, two lying on the surface V(z) = ¢,
one lying on the line ¢ = 1, and one lying on the line & = ~1. Since V(z) < 0 in M., trajectories cannot
leave the set through the parts of the boundary on the surface V(z) = ¢. Using the result of part (c), we see
that the trajectories cannot leave M. through the lines o == £1 since on those lines jo| must be decreasing.
Hence, every trajectory starting in M, will remain in M, for all future time. Let us find the largest invariant

setin E = {z € M. | V(z) =0}.
V(z) =0=22(t) = 0=sinz;(!) - 25, ) = 0= 5, (1) =0

Hence, the origin is the largest invariant set in E. We conclude, by LaSalle's theorem, that every trajectory
starting in M, approaches the origin as ¢ — oo.

(e) Since o6 < —|o| for |o| > 1, every trajectory starting outside the region jo| < 1 must reach this region
in finite time. Suppose, for example, that the initial point is in the region & > 1. Then

oo —0c=d<-1

Therefore o(t) < o(0) — ¢, which implies that the trajectory reaches the region |o| < 1 in time less than
or equal to o(0)} ~ 1. A similar argument can be made if the trajectory starts in ¢ < —1. Once inside the
region |o| < 1, the trajectory belongs to a set M, for some ¢ > 0. It follows from part (d) that the trajectory
reaches the origin as ¢ = co. Therefore, the origin is globally asymptotically stable.
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e 8.19 (a)
) . 1 . . 1
T, =Ty, Ip= M—[—mza sinzg; —Dzy + P], 3= ;{—173 cos Ty — s + Epp)
Equilibrium points:
1 . 1
0=z, 0= M—[—ngsmzl —D252+P],. 0= ;[—173005:51 — oZs + Epp]
Substituting z3 from the third equation into the second one, we obtain

0.815 = 22—7(1.7cos:.u1 + 1.22)sinz,

Using “fzerc” of MATLAB, we found two roots in the region ~7 < z; < n. The corresponding equilibrium

points are:
0.4067 1.6398
p= 0 r 4= 0
1.30t 0.4085

o7 0 1 0
57 = | ~m/M)zscosz, ~D/M —(m/M)sinz,
—(m/r)sinm 0 —(m/T)

0z ~0.1019 0 —0.4001
= pis asymptotically stable

0 1 0
g = [ —128.7204 -4 -53.821 ] = Eigenvalues = —2.0215+ 711.171, —0.366
z=p

0 1 0
87|~ | 3828 -4 -1357311 | = Eigenvalues= —3.4381 j1.7179, 24671 = g is unstable
Ozl.=g | —0257 0 -0.4001

(b) Estimate the region of attraction of p. Use V{(z) = yT Piy, where y = x ~ p and P, is the solution of
the Lyapunov equation A + AP, = —I. Using MATLAB, P; was found to be

16.039 -0.0013 6.6042
P = | 00013 0.1247 -0.0239
6.6042 -0.0239 4.3642

The eigenvalues of Py are 19.0159, 1.3877, 0.1243. Set g(z) = f(z) — A (z — p). We have

gi(z) = 0
g2(z) (h/M)|—z3sinz, + pasinp; + p3(z; — p1) co8p1 + (23 — pa) sin py

g3(z) {m/T)[cos z1 — cospy + (z1 — ;1) sinpy]

|

P ) , a ] )
992 _ (0 IM)(~z3coszy +pscospr), O = (m/M)(—sinz +sinp), I = (ms/7)( sinzs +sinp)
8:1 axa 521

Using the mean value theorem, we obtain

l92(2)| < (m /M)(2w:} lys) + pagd),  lgs(@)] < (m/)0?

We have ]
V=-yTy+2%T Py
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P Pz P 0 Mage + Mad
Pig=| p2 px2 p= g | = | pPazge + poags

P13 P23 Das 3 P3292 + P33g3
(Pig)l < (mipzl/M)Q2lw] sl + pav?) + (malpual/me? € aig? + bajwa| Jus
(Prgal S (mlpaal/MY@ll lys)+ 2sp?) + (malpasl/mhnd & aop? + B2 lya) |
I(Pig)sl < (mipasl/M)2l| lysl + pavd) + (slpssl/Ty? & asy? + bl |usl
Hence -
Prallz < ay? 25 3 dza:z[I?Jll] N[hlll]
1Pl < ay; + 2bnl° |ys] +dyiyz = lys] lyal
wherea = af +a3 +a,b=a1b) +azby +azbs, d=3 + b2 + b3, and N = [ g g ] Thus,

"P19”2 < vV /\mnz(N) ”3}”%
V < — vl + 2V Amaa (N)llyl13

Letr = 1/21/Amaz(N) and ¢ = 2 Agin(P1) = Amin{P1)/4Amaz{N). It can be verified that ¢ = 1.8175x 1075.
The set {V(y) < ¢} is an estimate of the region of attraction.

= 8.20 .
(a) Take V(z) = i(z% + 23). Then

V(z) = 3123 = 123 = g(t)z3 < —ky 73
Let

A(t)=[_01 _gl(t)], fi=[_°1 (1,] cey=[0 Vo) ]

Using g(t) > k,, it can be shown by calculating the observability Gramian that the pair (A, C(t)) is uniformly
observable. Sinee A(t) = A-CT(t)C(t) and C(¢) is uniformly bounded, we conclude that the pair (A(t), C(t))
is uniformly observable. It can be easily verified that P = %I satisfies the equation

—-P(t) = P()A(t) + AT(1)P(t) + CT()C(t)

It follows from Theorem 8.5 and Example 8.11 that the origin is exponentially stable.
(b) With g(t} = 2 + €', the state equation is

Ty = I3, Ta = —I; — (2 + e‘)zz

" It can be verified that
21{t) = —(1+ e~ %Yk, z2{t) =€k

is a solution for any constant k. Thus
z3(t) =+ —k and 22(t) 2 Dast o &
This shows that the origin is not asymptotically stable. Hence, the boundedness of g(t) is necessary

» 8.21 Linearize the system at z = Q. The linearized system is studied in the previous exercise. The origin
of the linearization is exponentially stable. Thus, by Theorem 4.13, the origin is an exponentially stable
equilibrium point for the nonlinear system.
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« B.22

-1 -1 -at)
&= 1 0 0 T = A(t)z
alt) 0O 0 ]

With V(z) = z7z, we have
V(z) = £T[A(t) + AT(t)]z = —2% = —2TCTCs
where C' = [1,0,0]. Taking K(t) = [~1,1,a(t)] yields

0 -1 —at)
A(t)-K(t)C=[0 0 ]
0

The transition matrix of [A(2) — K (¢)}C] is
1 —(t-17) —f:a(a) do
®t,7)=1]0 1 0 J = C®(t,7) = [ 1 —(t-1) -f:a(a) do ]
0 0 1
With a(t) = sint + sin2¢, it can be seen that the pair (A — KC,C) is uniformly observable. Exponential
stability of the origin follows from Example 8.11.
¢ 8.23 (a)
6 = di—r® = g, -7 = ¢, 1<i<n-1
én = Zn—1 = foix)+ (6 fi(z) + gola)u — r(
Hence, e satisfies the equation
é = Ae+ Blfo(z) + (8*)T fi(z) + golz)u - ()]
?rhere (A, B) is a controllable canonical pair that represents a chain of n integrators.
b}
V = 2TPe+2"T !¢
2¢"P{(A - BK)e + Blfo(z) + (6*)T f1(z) + go(2)u = v — Ke]} + 2¢7T'I'f, (z)eT PB
= eT[P(A- BK) + (4 - BK)7Ple + 2e"PB[~¢" fi(z)] + 26T fy(z)e” PB = —eTe
By Theorem 8.4, all state variables are bounded and lim,_,  (2) == 0.
(c) The closed-loop system can be represented as the linear time-varying system

A =[A(t) + B, e(t)=Cx

It

where
_[ A-BK -BuaT(¥) _ 0 —B(w{t) - w(t))T e
Al = [ ra(®)BTP 0 ]’B(‘}‘ [ T(w(t) — %(t)) BTP 0 ] * = [ p ]
C=[1I 0], wt)= fi(z(t)), and w(t) = fi(R(t)). We want to show that the origin is exponentially
stable. Since lim;_,o0 e(t) = 0, it is sufficient to prove exponential stability of the system (see Example 9.6)

X =ABX, e(t)=CX

It follows from Theorem 8.5 and Example 8.11 that the origin of the closed-loop system will be exponentially
stable if the pair {A(t), C) is uniformly observable. Setting K(z) = [ r (;)gfp , It can be seen that
A(t) = A(t) - K(t)C. Since uniform observability of (A(t),C) is equivalent to uniform observability of
(A{t) — K(2)C, C) for any piecewise continuous bounded K(t), we conclude that the origin of the closed-loop
system will be exponentially stable if (A(t), C} is uniformly observable. In this case, im0 ¢({Z) = 0.
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Chapter 9

e 9.1 (a) If P and Q satisfy the Lyapunov equation, then kP and kQ satisfy the same equation for any

positive constant k. Thus Q) (
- Amin kQ _ Amin Q) -

(b) let -
o0
P = [ exp(ATt) exp(At) dt, Py = f exp(ATH)0 exp(At) dt
1) i
Then oc
P-P= / exp(ATH[I - Ol exp(At) dt
1]
Q>I=2I1-Q<0=P-P<0=>P>P
Hence, Amaz(P2) 2 Amaz(F1) and
nu({) = )‘min(I) X ’\mnz(}:?) 2 1
p(Q) Amaz (Pl) Amin(Q)
(c} Forany Q= QT >0, let k= 1/Apin(Q). Define @ = kQ 50 that Amin(Q) = 1. Thus
p(1) > (@) > p(@), YR=QT>0
» 9.2 (a) The function |h;(v)| is sketched in Figure 9.1. From the sketch it is clear that

&
144

thi(v)] < lvil, Vv < L(1 + 6)

(b) The derivative of V(z) = zT Pz along the trajectories of the system satisfies

V@) = -"z-2%TPBA(Fz) < -ljail} + 2zlalPBlLIA(FD)],
) 24
< ~lall} + 2lliPBle 5 1Fzle < —lzl + T IPBIIFIalal}

0 1
<
1+6 " 2{|PBlllIFll2

(c) The origin is asymptotically stable by Theorem 4.1. To estimate the region of attraction, find a constant
¢ > 0 such that the set @, = {z € R" | 27 Pz < c} is inside the region |(Fz);| < L{1 + &) for all i. The
largest such constant is obtained by minimizing V(x) on the boundary of the region.

(d) We have

< 0, for

0 1 175 1
A-BF = [ 0 _1} = P=[ ] 1_5} = 2||PB||2||F|l2 = 8.0623
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Il

L Li+8) v

Figure 9.1: Exercise 9.2.

d < ! = 4§ < 1 =0.1416
1+6 ~ 8.0623 7.0623 ~

The region of interest is given by |Fz| < 1.1426. Take ¢ < (1.1426)%/[FP-1FT] = (.724. The region of
attraction is estimated by {zT Pz < 0.723}.

e 9.3
. v
Vita) = G+ G rte) - S Bolt,Ca) < aallalld+ calllal Blalls(t, Gl
< —csllzl} + cailzll | BllvlIC Mzl = —[ea ~ YeallBlllIClla)lizi)?

For all v < v* = c3/(cal| Bll2}IC|2), the origin is globally exponentially stable.

¢ 8.4 The closed-loop system is given by
& = (A - BBTP)z + Bg(t,z)
Rewrite the Riccati equation as
P(A-BBTP)+(A~BB"P)"P+Q+PBBTP +2aP =0
Consider V(z) = zT Pz as a Lyapunov function candidate.
V(t, z) zT[P(A— BBTP)+ (A— BBTP)"P|z + 2zT PBg(t,z)
~z7|Q + PBBTP + 2aP)z + 2¢T PBg(t, x)
—k*ll2lf — Wwllf — 2eAmin(P)l|]i3 + 2kllwllzllll2, where w = BT Pg
~[kllzllz — lfwile]® ~ 20Amin (P2} < ~20Amin(P)l|z[2
Hence, the origin is globally exponentially stable.

Al

¢ 9.5 The closed-loop system is given by
&= (A - %BBTP) z + Dg(t,y)

Let V(z) = 2T Pz,

) 1 T
Vi) = 27 [P (A - gBBTP) + (A - %BBTP) P] T+ 2zTPDg(t,y)
= - %zTPDDTPa: - %ITCTCI ~ 27 Qz + 2zT PDg(t, y)
1
< - 24TPDDTPz - %rlyn% — 627Qz + 2|17 PDllakllylls
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Set z = DT Pz,

. 1 1
Vir) < - ;IIZII% - ;II.UII% — ez Qz + 2k|zlo Iyl

1 1
< - ;IIZN% - ;Hylli + k(l|z3 + liyll3) — ez™ Q=
< -exTQx

for v < 1/k. Hence, the origin is globally exponentially stable.

e 9.6 (a) The perturbed system can be written as

& = Az + |jz||3Bz, where A=[_wa :z]’ B=[ﬁ _57]

V(z) = 2Tz is a Lyapunov function for the nominal system since A + AT = —2al. The derivative of V'
along the trajectories of the perturbed system satisfies

V < =2allz3 + 2I|Blizllzli; = —2aljzli3 + 2v/B% + 72llzll3
For ||z|lz < r, we have
V < ~2allall} + 2 VB + Plisllf < 0, for VR <G
(b) Calculating the derivative of V' directly (without viewing ||z||2Bz as a perturbation term), we obtain
V = =2alizll; + 28]|=|l3
When 5 <0, V < —2a])z||2 and the origin is globally exponentially stable. When 8 > 0, we have
V< -2a- gzl Vel <r

Hence, V is negative definite when r? < a/8. Since V(z) = ||z]|3, we conclude that the set {||z|i2 < a/f} is
included in the region of attraction.

(c) Clearly, the results of (b) are less conservative than those of (a).

* 9.7 f(z) can be written as f(z) = Az + f(z), where f(z) and its first-order partial derivatives vanish
at z = 0. Take g(z) = Bz so that the perturbed system is given by £ = (A + B)x + f(z). Since A has
eigenvalues with zero real parts, for any v > 0, there is B with ||B}] < v such that at least one eigenvalue of
(A + B) has a positive real part. Hence, the origin of the perturbed system is unstable.

e 9.8 (a) The derivative of V' along the trajectories of the perturbed system is given by
-8V av
V=— —_— < —
5 1(2) + o0(@) < —oa(llal) + aullizllal

Let
w=__min_ oalel) >0 and o2 = maxlellas(lzl) >0
Then, for all 7 € {V(z} = c}, we have

V<-a+7a2 <0, fory<ai/ae
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Thus, © is positively invariant for sufficiently small . Inside 2, we have
- LY
V < ~as(lell) + vaz  ~(1 = Oas(lizl), ¥ =il > o5” (TF)

where 0 < # < 1. The preceding inequality is valid as long as az(||z||} < yaz/8 for all £ € Q, which is the
case for sufficiently small 7. It follows from Theorem 4.18 that all solutions starting in  are ultimately

bounded by a class X function of .
(b) Since A = 3L(0) is Hurwitz, the origin of # = f(z) is exponentially stable. By Theorem 4.14, there is

ro > 0 and a Lyapunov function V(z) such that
o7

3l < call=)l

allzl® < V(z) < eli=l?, f( ) < =csllzll?, ’

for all ||z|| € ro, where ¢, to c, are positive constants. The derivative of V along the trajectories of the
perturbed system is given by

. 7
- 3‘;. o) + %z-g(z) < —(e3 — yea)llzll?

Hence, there is ¢g > 0 (independent of ) such that for all ¥ < c3/eq, the set Q) = {V(2) < co} is positive
invariant and every trajectory in {1 converges to the origin as ¢ tends to infinity. For suﬂicmntly small -,
the ultimate bound of part (a) will be small enough to ensure that every trajectory starting in 2 enters
in finite time. Hence, every trajectory starting in { converges to the origin as ¢ tends to infinity.

(c) If A is not Hurwitz, we cannot ensure that the origin of the perturbed system is exponentially stable.
Hence, the proof of part (b) falls apart; that is, we can show uniform ultimate boundedness but we cannot
show that the trajectories will converge to the origin. In fact, the example given in the problem statement
is a counter example where the trajectories do not converge to the origin for all z(0). For this example, we

have 0 -1 0
A= éi = [ 1 0 0]
z=0

£ 01 0
which is not Hurwitz since all its eigenvalues are on the imaginary axis. On the other hand, the derivative of
V (z) = 2} + 313+ 12} +x1 73 along the trajectories of the nominal system is given by V (z) = ~(2z; +23)* <0.
Vi{z) =0=22;(t) + 23(t) = 0 = 24, (t) + 23() = 0= z5(8) =

Hence, by LaSalle’s theorem, the origin is asymptotically stable. It follows from Theorem 4.16 that there is
a Lyapunov function V{z) that satisfies the given inequalities in some domain around the origin. Finally,
the linearization of the perturbed system at the origin is given by

s+a| _19 Y &
=6 [0 1 0

Oz
and its characteristic equation is A* = aA2 4+ A + a = 0. By the Routh-Hurwitz criterion, it can be seen that
this matrix has at least one eigenvalue in the right-half plane. Hence, the origin of the perturbed system is

unstable.
e 9.9 (a)

&y = -3+ 25, #y=-—25—123
Linearization at the ongm y1e1ds the matrix A = 0 which is not Hurwitz. Hence, the origin is not exponen-
tially stable. Zet V(z) = }zf + ix%.

V = o}(—ad + 23) + a§(~3 - a}) = —a — o1°
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Hence, the origin is globally asymptotically stable.
(b) Linearization at the origin yields the matrix [ 3 —7'7 ] whose eigenvalues are /2 + 7vv/3/2. Hence,

the origin is unstable. The derivative of V along the trajectories of the perturbed system is given by
6

V = 28—z —-yzla:z+'y:c1x2+'y:r2
< -2y -a3’ +§(I1+32)+E(31 +23°%) + 723
= —(1-F)at- (1-3) & + 327 + o3 + a8
3 30,7 ~
< -3- Zz% +§zf+§z§+'yzg

1/4
< - Z(z? +219), for |z;] > vM* and |za| > ['y+ e +’r]

For |z1] < 4*/4, we have

. 3 3 3/
V< 2.8 g0+ X 47
< 4.1:1 4 + > + 2::2 + ’y;rz
Let p; () be the largest positive real root of the polynomial equation
1l 1o 72 'Y 2
21;' + N 23! + ‘)‘IJ

1/4
p1(7) is a class K function of v and p1(7) > ['y ++/7 + 'y] . Hence, for |z;| < ¥*/4, we have

V<- —(xl +23%), V22l = (1)

For |z2] < [‘r +v¥+ ] , we have
. 3 3 1/2 3/2
V- —z§°+%zf+g-['y+\/'y2+'y +’y{’y+\/'yz+'y]

4 4
Let pz(7) be the largest positive real root of the polynomial equation

S ['r+\/‘r2—+] +7[7+\/“TT]3/2

2 2

p2(7) is a class K function of v and pa(7y) > v!/4. Hence, for |z2| < [-y + \/-T'*’T-?] , we have
V<- b +ald), ¥inl2 e
setting g = max{p1(¥), p2(7)}, we see that the inequality V < - $(x3 + 23°) is satisfied for all ||z}|s > 4.
The conclusion follows from Theorem 4.18.
* 9.10 (a) With g =0, we have
V = —aczysinz; — bex? - cx} < —(b- a)cx} — ex

which is negative definite for all z, since b > a.
(b) With g # 0, we have

V = —acz; sin 2y — bezd — ¢z2 + (ez1 + 222)g(t) coszy < —(b - a)er? — ez? + kv/e? + 4 ||zi)2

Hence, the solutions are globally uniformly ultimately bounded and the ultimate bound is proportional to
k. An estimate of the ultimate bound can be obtained using Theorem 4.18,
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e 9.11 (a) With =0, we have
I']_ = [(sm $2)2 - 1] I, .'ifz = ~I9

Linearization at the origin vields the Hurwitz matrix A = —1I; hence the origin is exponentially stable.
Global asymptotic stability can be seen by solving the equations to obtain

z1(t) =4 (0) exp [ A (sinz(e‘z'a:g(O)) - 1) d‘r] y  x2(t) = C_tzz(ﬂ)

It is clear that for all initial states, the solution z(t) tends to zero as ¢ tends to infinity.
(b) Exponential stability for sufficiently small b follows from Lemma 9.1. To show that the origin is not
globally asymptotically stable, show that there are other equlhbnum points. In particular, there is an

equilibrium point at z; = —(1+ b)n/2b, 22 = 7/2.

(c) While we cannot apply Lemma 9.1 because the Jacobian matrix is not globally bounded, the lemma
hints that the origin of the nominal system is not globally exponentially stable because if it was so we would
have expected the origin of the perturbed system to be globally exponential stable as weil. The fact that the
origin of the nominal system is not globally exponentially stable can be seen from the closed-form solution

given in part (a).
e 9.12 (a) Let b=0. Try V(z) = 3z} + $23.
Viz)= ~23 + 11279(2) + @) — 212a(2y + @) = —1?

V{z) = 0= z((t) = 0=> aza(t) =0 = zT2(t) =
Thus, the origin is globally asymptotically stable. To investigate exponential stability, linearize at z = 0.

af = =14z z1+a _| -1 a
-2z, —a 0 ==o_ —a 0

A= 5l
The characteristic equation of A is A* + A + o = 0. Hence, A is Hurwitz and the origin is exponentially
stable.

-a b
Hence, A is Hurwitz if b < min{1,a?}.
{¢) For b > 0, the equilibrium points are

(0,0),( o+ Vb, “+‘/—), (—-—a-—\/E,E«-’-—\/E)

o= [ -1 a ] The characteristic equation of A is A2 4 (1 - b)A+4a?-b =0,

vb Vb
Since the system has multiple equilibria, the origin is not globally asymptotically stable.

(d) While we cannot apply Lemma 9.1 because the Jacobian matrix is not globally bounded, the lemma
hints that the origin of the nominal system is not globally exponentially stable because if it was so we would
have expected the origin of the perturbed system to be globalty exponential stable as well. It is possible to
show that the origin of the nominal system is not globally exponentially stable by a contradiction argument
that involves deriving a special converse Lyapunov function for this example. The argument is long and can
be found in the solution manual of the first edition (See Exercise 4.25).

¢ 9.13 (a) V(z) = z satisfies (9.11) with a;(r) = az(r) = ré.

V(z) = 4z% = — 4zt = V(z) < —as(|z|), with I
= =172 < —az(|l=|), wi a;:,(r)_w
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= 4|z < aq(|z}), with ay(r) = 4¢®

z

(b) ai1(:), a2(-), and ay(-) are clearly class X, functions. a3(r) is monotonically increasing and a3(r) — o
as r — oo. Hence, az(-) belongs to class K.

(c)
as{az {n(r))) _asfr)  4* ¢
ay(r) T as(r)  4r3(1412) T 14192 “0asr— o0
(d) o
T x
= <l vy
’1+z2 T+z2 S3 Yll
1
- -_ 6
6>2 = E=1 2+ >0

Hence, the solution z(t) escapes to co for any initial state z({0).
e 9.14 Let V(,z(t})) =0.

D.w lm sup [W (t+ h,z(t+ h)) — W(,z(t)]

h—ot h

= lim sup \/V(t+h z(t + h))
h=0+ k

‘We have e
Vit +h,z(t+h) < -é»IIa:(t + h)|?

z(t + k) = R[f(2,0) + g(t,0)] + O(h) = |lz(t + W) = Kllg(t, 0)|I* + ho(k)

LV (t+hat+ ) < Sllg(e, 0 + 52 < Srgr) 4 K1)

lim sup \/Vt+hz(t+h))<1/ )< f 2 1/’“"‘
h=ot B 2y

since v/cq4/2¢; > 1. Thus, D, W < ¢46(t)/(2\/c1), which agrees with the right hand side of (9.17) at W = 0.

¢ 9.15 As in Example 9.6, the perturbation term B(t)z satisfies (9.15) with () = || B(t)||> and &(t} = 0.

-~ < - < =
i) marsg[Tamersg

where k is independent of A. Given £ > 0, we can choose A large enough so that (k/A) < &. We conciude
from Corollary 9.1 and the third case of Lemma 9.5 that the origin is globally exponentially stable.

» 9.16 As in Example 9.6, the perturbation term B(t)z satisfies (9.15) with v(¢) = || B(t)]|2 and 6(2) =

] e 1 \/ t+A
- TV dr < —¢/A / 2(1) dr
[ e < pyfa[re

1
< ﬁ f ‘7(7) d‘}' \/—

where k is independent of A. Given £ > 0, we can choose A large enough so that (k/vA) < . We conclude
from Corollary 9.1 and the third case of Lemma 9.5 that the origin is globally exponentially stable,
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¢ 9.17 Write A(t) = A+ B(t), where B(t) = A(t) — A. Since A is Hurwitz and B(t) - 0 as t = oo, the
result follows from Example 9.6.

¢ 9.18 Using the third case of Lemma 9.6, we conclude that z(f) — 0 as ¢ — oo.

¢ 9.19 We view the system & = f(t,z) as a perturbation of the nominal system £ = f(0,z). Noting that
A+ AT = —2al and B + BT = 28I, we use V(z) = z7z. The derivative of V along the trajectories of the

nominal system is given by
V=aT(A+ ATz — |z|}2T(B+ B )z = —20}|z([3 - 28||z|lf < —2a|z|i2

Thus, V satisfies (9.3)-(9.5) globally. Since ¥(t) — 0 as ¢ = o0, we conclude from Corollary 9.1 and the
second case of Lemma 9.5 that the origin is globally exponentially stable.

¢ 9.20 Let V(z) =z Pz.

= 2sTPf(z) — 0G(z)GT (z)Pz] + 22T Pw(t) = 2zT Pf(z) — 2027 PG(2)GT(z)Pz + 227 Pu(t)
< —4z2T Pz -W(z) + 22T Puw(t) < —vV(z) + 2|z|l2Amax(P)(a + ce~*)

v

Amax(P)

vV Amin(P)

U< —%U(t)+ (a +ce™)

Application of the comparison lemma yields

Ut) < exp(—18/2)U(0) + f0 expl~(v/2)(t — )] j“%( +eeT) dr

The right-hand side approaches (2a/7)[Amax(P)/1/Amin(P)] a8 t tends to infinity. Hence, an ultimate bound
on U(t) can be taken as (2ka/v)[Amax(P)/+/Amin(P)] for k > 1. Since ||z|jz € \/V/Amia(P), an ultimate
bound on ||z{|2 can be taken as (2ka/7)[Anax(P)/Amin(P)].

e 0.21 The perturbation term satisfies (9.15) with 4 = 0. Therefore, (9.18} takes the form

t A .
W) < e t-Wwi)+ f e UTkd(r) dr, YE> 1

to

to+{i+1)A )
Wit + i+ 1A) < e "2W( +id) + f gt (+HDA—TI L5 (1) gy

to+iA

to+(i+1)A
< e“’AW(to+£A)+[ ké(r) dr < €AW (to +iA) + knA

to+l'.A

Hence 1
‘ oani T —oayi-i-1 knA
Wt +ild) < (€7%) W(to) + D _ (e772) knd < W(to) + 1-e7b

7=0
Between any two sampling points #p +iA and iy + (i + 1)A, we have

. t
W(t) < e BW (1 +iA) + f e ""IkS(7) dr < Wty +iA) + knA
to+iA

Thus knA

W(t)SW(to)-Fm'f-knA, Vig+iA<t<tp+iA+ A
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Setting k3 = k(2 — e~?2)/(1 = ™4}, we can rewrite the foregoing inequality as
W(t) < W(to) + kinA, Vo 448 <t<to+iA+A
Recal! that W(t) = 1/V(t,z(t)). Hence
W (to) < Vezllz(to)llz, and W(t) > verll= (@)l

Thus -
(2 < \/gllz(ta)ﬂg + _IV/’Z—E;“

Given € > ¢ and A > 0, choose 1 and p small enough to satisfy

kinA
C_2p+ 17
€ Vo

& §.22 Prove by induction that all the principal minors of A are positive. It is clear that a;; > 0 and

<E

air G612
det = ap1G23 — a13631 > 61822 — [ayaf jaa| > 0
a1 422

Now assume that the mth-order principal minor det A, > 0 and write the (m + 1)th-order principal minor
as det 4,41, where
An b ]

Am+1 = [ CT d
and A, b, cT, and d have dimensions m x m, m x 1, 1 x m, and 1 x 1, respectively. All the elements of b
and ¢ are nonpositive and d > 0. We have

det Amyy = det 4,, det{d — T AZ'D)

From the diagonal dominance property, all the elements of A;;! are nonnegative. It follows that all the
elements of (d — ¢cTA;!b) are nonnegative. To see this point consider the equation

Amv'i'b = un
Tv+d = w,

where v is a vector of ones. Due to diagonal dominance, v, and w, have positive components. After a simple

manipulation we write
d—cTAZb=wy —cT A7 wy

Since ¢ has nonpositive elements, 47! has nonnegative elements, and w,; has positive elements, we conclude
that —cTAzlwy > 0. Thus, d — eTAZ'b > 0. Therefore, det Apmy; > 0 and the proof is complete.

e 9.23 If ¢5(z;) = lizill, then
V(t,2) < ~§Amin(DS + 87D) ) ¢3(2i) < —calfell®

for some ¢z > 0. If
callz:f? < Vilt, 73) < cialixi)?

then
Vit,2) =) diVilt.zi) < Y dicallzll® < eoflo)?

and, similarly, V(t,z) > ¢1||z||*>. The conclusion follows from Theorem 4.10.
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* 9.24 A direct application of Theorem 9.2 will not be conclusive. Therefore, we proceed to perform the
composite Lyapunov analysis as follows. Write the state equation as

& = ~xi + q1(2), d2=-325 + g2(2)

where gi(z) = —1.5z1|22|* and g:(z) = 2iz]. We try Vi(z,) = =% and Va(zs) = 123 as Lyapunov function
candidates for the isolated subsystems.

dV)

2, (~21) = =2l = —¢i(z1), where ¢1(z:1) =}
dV;
o (—98) = 2§ = ~¢i(z2), where ¢a(z2) = fzaf’

Next, we study the interconnection terms.

dV;
Ejyl(x) = -1.5z}|z2* = —1.5¢1¢2

dV
dz——:.?z(x) =ziz3 < i

Consider the composite Lyapunov function V (z) = d\Vi{z1) + d2V;(x2).

_ N T 2d; 1.5d;, — d. ¢
o[ 8] [ty Bt ][2]

For V to be negative definite, we want the 2 x 2 matrix to be positive definite. Choosing d; = dz =1 results
in a positive definite matrix. Hence, the origin is asymptotically stable.

¢ 9.25 Use the notation of Section 9.5. Represent the system as an interconnection of two subsystems.
x‘l 0 1 2!1 + ) 323 g
Zq -1 -1 T .'L'g
; | 3
T3 [ 11 ] [ . ] z3
T
_ Iy 1.5 05 T
v.l(wlaxz)_[zz] [05 1 ] [12 ]
as a Lyapunov function candidate for the first isolated subsystem.

=-z2-22= oy =1, ¢ = x} + 12

We also have f; = 1.809. Use Va(zs) = ;2 as a Lyapunov function candidate for the second isolated
subsystem.

Use

isolated

=—Ig = 02=1, ¢2 = |$3I3

z isolated
We also have 5 = 1. The interconnection terms satisfy

flarllz < e1v2¢1 + c2v2¢2

in the set {|z;| < ¢, |72] € 2}

g2} < V2,
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The matrix S is given by
P [ 1-1.809v2c; —1.809v2c, ]

-V2 1

S is an M -matrix if
1 —1.809v2¢; — 3.618¢; > 0

which can be ensured by choosing ¢; and c; small enough. Thus, the origin is asymptotically stable.
¢ 9.26 Use the notation of Section 9.5. Let P; be the solution of the Lyapunov equation P;dy+AZLP; = —J;
and use V;(z:} = 27 Piz; as a Lyapunov function for the ith isolated system.

Vi

g;;Aiizi = —llzilld = ai=1, ¢; = ||zillz

“%“ < %Plaliadls = B = 2Pl

The interconnection terms satisfy

(@l < 3 HAisllallzilia = s = lldssllz

=1

The mairix S is defined by
for j =1

1,
s- j = 3 .
Y { —2||Blzll As5l2, for j#i
The origin is asymptotically stable if S is an M -matrix.
e 9.27 Since 0 < e;; < 1, we have
m m
lgilt,enzr,. .., eimem)ll < D eismiids(zi) < D widilz;)
J=1 j=1
Thus, the conditions of Theorem 9.2 are satisfied irrespective of the values of e;;.

¢ 9.28 (a} The closed-loop system is given by

[1]4[]+ ()0
A-BF, -BF;

where A = _c 0 is Hurwitz. When r is constant, the system has a unique equilibrium point

(Z(r), Z(r)), where C'Z = r. Moreover, this point is exponentially stable. Hence z(t) = 7 and 2({) = Z as
t = . Consequently, g(t) = Cz{t) approaches C% = + as ¢t — oo.

(b) Suppose that |#(2)|| < £ for all ¢ > 0. The equilibrium point (Z(r), #(r)) is a linear function of r. Define
% =z —Z and # = z — Z to shift the equilibrium point to the origin.

Consider the Lyapunov function V (£, 2) = { P i_: J , where P is the solution of the Lyapunov equation

PA+ ATP = —1. The function V satisfies the inequalities (9.41)—(9.44) of the text with €1 = Amin (P),
€2 = Amaz (P), €3 = 1, €4 = 2Amaz (P), and ¢5 = 0 (since V is independent of »). Thus, all the assumption
of Theorem 9.3 are satisfied globally. Therefore, the solutions ((t), ()} are uniformly ultimately bounded
with an ultimate bound that is proportional to €. It follows that the norm of the tracking error is smaller
than ke for some k > 0. Moreover, if 7(t) = 0 as ¢ — oo, then the tracking error tends to zero.
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» 9.29 (a) Since (Z, Z) is exponentially stable, for initial states sufficiently close to the equilibrium point,
z(t) = Z and z(t) - Z as t = o0. Consequently, y(t} = h(z(t)) approaches (Z) =r as t — o00.

(b) Suppose ||#(t)l]z < € for all t > 0. It can be easily verified that all the assumptions of Lemma 9.8 are
satisfied in some domain around the equilibrium point. Hence, there is a Lyapunov function that satisfies
inequalities (9.41)—(9.44) of the text. Now, it can be seen that all the assumptions of Theorem 9.3 are
satisfied in some domain around the equilibrium point. It follows from the theorem that for sufficiently small
g, the solutions will be uniformly ultimately bounded to a ball around the equilibrium point. The radius
of this ball is proportional to £. Hence, the norm of the tracking error is smaller than ke for some & > 0.
Moreover, if {t) — 0 as ¢ —+ 0o, then the tracking error tends to zero.

e 9.30 The solution of this exercise is identical to the solution of Exercise 9.29, except for taking the state
vector as (z, 21, 22)-

¢ 9.31 Following the proof of Lemma 9.8, we see that
lexp{rA{2)]il < k1e™"", ¥ 7 >0

for some positive constants k; and v, and P(t)A(t) + ATP(t} = —I has a unique positive definite solution
P(t) for each t > 0. The matrix P(t) satisfies

PA®) + ATP() = -Q(t)

where Q(t} = AT (t)P(t) + P(t)A(t). Therefore,

P(t) = fu = [e"““(”]TQ(t) [e4®] ar

1201 < 1) f0 " K dr < kA

Let V(t,z) = 27 P(t)z. Then
V = T[Pt)AR) + AT@P()z + zTP(t)z
= —zTz+2TP(t)r < —qV +ajAQ)|V

Using the comparison lemma, we obtain
t
V(t,2(t)) < V(to, z(to)) exp [ f (—c; + cQIIA(-r)ll) df]
to

By Cauchy-Schwartz inequality, we have

t t 1/2
[aer < ([ 1aer o) Vi < Vo=

Thus
V(t,2(8)) < Vlto, zlo)) exp [~cr(t — to) + c2v/plE — 1) < ese™*"12V (t0, 3(t0))

which shows that the origin of & = A(t)z is exponentially stable.
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Chapter 10

¢ 10.1 &(¢) = Ofe) = |6(e)] < kle}, for Je] < e. Thus, |5(e)] < kv/eve = ki, for |¢| < c. Thus, 6(¢) is
O(/€). It is not O(let?).

¢ 10.2 The answer is no. If there was such N, then
en <kel =1 < kg™
The second inequality is impossible since ™Y ~ 0 as € = 0.

*10.3 (a) Set £ =0,
‘ ~0.2z10+ 3 —tanlz19, z10(0) =m
02220+ § —tan~lz0,  Z20(0) =1

10
I20

(b) Substitute 3 = ¥10 + £%11 + -+, and z3 = Ty + €T3 + -+ in the state equations and match the
coefficients of £. For the first equation we have

. . x - -
g+ ET L+ = —(0.2+€)(::m+ea:11+---)+Z—tan 1(::10+e::11+---)+£ta.n I(Igu+5121+---)

€
7 T+ +etan 790+ -

T
= ~02z04+6(-210—-02z1;+ )+~ —tan™! -
10 + e(—z10 T11 ) 7t T T a7,

Matching coefficients of £, we obtain

Iy =— (0-2 + ) Ty1 — Tyo +tan” g9, (0} =0

1+z3,
Similarly

. 1 _

T = = (0-2 + m) X1 — Tao +tan 1 10, 321(0) =0

" {c) The nominal system has a unique equilibrium point (p, p}, where p satisfies the equation 0.2p+tan™p =
= /4. Linearization at this point yields the matrix

off  _[02-mm O
= 0 —02- ks

{p.p)

The equilibrium point (p, p) is exponentially stable. Hence, Theorem 10.2 applies and we can conclude that
there is a neighborhood of (p, p) such that for all initial states in that neighborhood, the approximation is
valid on the infinite time interval.

(d) Write the equation for £10, 220, 11, and 2, as four simultaneous autonomous equations and solve using
a computer program. The simulation results are shown in Figure 10.1.

153



0.75
07t i
o.65} o
- i
k] ,-
06 A
fr — Exact
o.55} /7 =+ 1st order approx
— - 2nd order appro
0.5 - 08
0 1 2 3 0 1 2 3

1 t

Figure 10.1: Exercise 10.3.

¢ 10.4 (a)
10 = I, Z10(0) = m
0 = ~Ti0—22, 2Zw(0)=mn
(b)
Iy = o, z11(0) =0
g = —rpy-—zm+rd,,  za(0)=0

{¢) The nominal sysiem is a linear one with a Hurwitz matrix. Hence, the origin is exponentially stable

and Theorem 10.2 applies.
(d) The simulation results are shown in Figure 10.2.

1
— Exact
= 1st order approx
| = - 2nd order approx
- ) ‘\
o "N
N
1] R
-05
) 1 2 3 4 5 ) 1 2 3 4 5

* 10.5 (a)
f10 = —Iw0+ T, z10{0) =m
. 1.3 —
90 = ~Tp — 3Ty,  T{0) =m
(b} )
Ty = -—T11 + 22, 1 (0)=0
Z21 = ZTi0— T31 — T2, 2u(0) =0

(¢) The nominal system has a unique equilibrium point at the origin. The Jacobian matrix %zf 0.0)

—01 _11 is Hurwitz. Hence, the origin is exponentially stable and Theorem 10.2 applies.
(d) The simulation results are shown in Figure 10.3. Note that z20(t) = 0.
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1 0.08
0.8 — Exact
-=- 1st order approx 0.06
06 - - 2nd order approx
* \ »0.04
0.4 ®
\.
02 -\_\. 0.02
o = = )
0 1 2 3 4 0 1 2 3 4
t t
Figure 10.3: Exercise 10.5.
¢ 10.6 (a)
£10 = o0 — T3, z10(0) =m
Fa0 = 2290 —z2,, z20(0) = 12
(b) _
Ty = Zn — 2Z10%11 + 210220, £11(0} =0
T21 = 2% — 2TapT21 — 1020, T21 (0) =0

{c} The nominal system has four equilibrium peints at (0,0), (0,2), (1,0), and (1, 2). The Jacobian matrices
at these points are

A =lo 2] sl =lo 2] #,=17 2] &,=17 %]
Ozgg LO 217 Ozlgy LO -2 62|y 0 21" Bzlyy 0 -2

Theorem 10.2 applies only to the equilibrium point (1, 2).
(d) The simulation results are shown in Figure 10.4.

1.4 —= 2 =
/’.
1.2¢ 1.8 ;e m T T T ===
S
L S PP 1.8 ’
*- .- XN ’/
0.8 1.4}
."
0.6 =+ 1st order approx| 1.2}
- - 2nd order approx

0.4 1

0 1 2 3 4 0 1 2 3 4

t t

Figure 10.4: Exercise 10.6.

s 10.7 {a)
Z10 = —ZTi0+ ZTan(l + Z10), Z10(0) =m
#30 = —Z10(210 +1), z20(0) = 12
(b}
11 = =11+ (1 + I‘m)I;u + ZopZ11 +1+ t?u, 311(0) =0
T2y = —(14 Z10)Z11 — T10%11, zn(0) =0
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(¢} The nominal system has a unique equilibrium point at the origin. The Jacobian matrix L 0o =
:i ; is Hurwitz. Hence, the origin is exponentially stable and Theorem 10.2 applies.
(d) The simulation results are shown in Figure 10.5.

e ==0.05 E= "'0-05
2 T 3 . .
—  Exact
1t -=- 1st order approx
- - - 2nd order approy
0
-1 -
0 1 2 3 4 5
e=-0.1
2
=N
1 4 \
ot 4
» 4 3
O 74 Ny s
-1 .
0 1 2 3 4 5
e==-0.2
2
AAN
/ \
1 7 \
» ' B
AY
or ’,/ R s
/d o U ———
/4
-1 -2 -
0 1 2 3 4 5 0 1 2 3 4 5
t t

Figure 10.5: Exercise 10.7.

¢ 10.8 The nominal solution is given by

19 = —Z10, 210(0) =71 = T10(t) = ne~*

Za0 = =220, 220(0) =10 = Ta0(t) =me”*

By calculating the state transition matrix as a function of ¢, the exact solution is determined as
71(t) = ne*(coset + sinet)
z2(t) = mne*(coset —sinet)

Thus
z1(t) — z10(t) = ne~*(—1 + cos £t + sin £t)
za(t) — z20(t) = = mne*(—1+ coset - sinet)
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It can be easily seen that |1 — coset| < et and |sinet| < et. It can be also seen that te™* < 1/e for all t > 0.
Thus 9 9
21 () — 210(t)] < e, Jzalt) ~ 2a(t)] < Tle

These error bounds are consistent with Theorems 10.1 and 10.2. They confirm that the approximation error
is bounded by ke for some constant k. Notice, however, that the constant k depends on the initial state
of the system. Thus for this quantity to be O(g), the initial states should by O(1); that is, they should be
uniformly bounded as ¢ —+ 0. When we have ¢ = 0.1 and 7 = 1, we should expect the error to be indeed
of the order of 0.1. But when £ = 0.1 and 5 = 10, then actually n = 0{1/¢} and we should not expect the
error to be of the order of 0.1, as we can see in the current case from the explicit error bounds. Numerical
calculations will confirm these observations. The point of this example is to illustrate that when we use the
perturbation method to approximate the solution of a differential equation for some small value of €, then
that value puts a limit on the magnitude of the initial conditions.

«10.9 (1)
1 71' 9, . A 1 T -2 2 1 2
Jaw(xz}== [ (z-z°)sin®tdt== [ sin°tdt(z-1°)=3(r—z°)
m Jo T Jo

The average system & = %e(z — z?) has equilibrium points at £ = 0 and £ = 1. The Jacobian function at
these points are £/2 and —¢/2. Thus, the equilibrium point £ = 1 is exponentially stable. By Theorem 10.4,
we conclude that, for sufficiently small £, the system has an exponentially stable periodic solution of period
7 in an O(e) neighborhood of z = 1. However, £ = 1 is an equilibrium point of the original system. Thus,
the periodic solution is the trivial solution z(t) = 1, and the equilibrium point £ = 1 is exponentially stable
for sufficiently small . Moreover, for initial states sufficiently near z = 1, z(2,£) = z,u(2,€) + O(e) for all
t>0.

(2)

1 /(" 2,_ 1,3 1 2
far(2) = ;j; (zcos®t — 32°%) dt = 3{z — z%)

This is the same average function as part (1). The rest of the solution is similar to part (1), except that in
the current case the periodic solution is nontrivial.

(3) ]
fr.w(z) = %/0- (-=x +0052t) dt=-z+ %

The average system & = —&(z — -;-) has an equilibrium point at z = % which is exponentially stabie. By

Theorem 10.4, we conclude that, for sufficiently small €, the system has an exponentially stable periodic
solution of period 7 in an O(e) neighborhood of z = % Moreover, for initial states sufficiently near z = %,

z(t,€) = Tau(t,€) +O(e) for all t > 0.
(4)

1 2x
fou(2) = 5= A (~zcost) dt = 0

The average system is £ = 0. We can only conclude that
2(t,€) = Zau(t, &) + O(e) = z(0) + O(e), VYt |[0,b/e]
for finite b > 0.

¢ 10.10 {1)

2T T - &
fav(z) = 2_1r/0- [ —(1+ 2sint)z: -2(1+cost) sin ] = [ —T2 —25i113'1 ]
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The average system has an equilibrium point at the origin. Linearization at the origin yields Qb[;l =
z=0

—E)l __11 y which is Hurwitz. Thus, the origin of the average system is exponentially stable. It follows

that, for sufficiently small ¢, the original system has a unique exponentially stable periodic solution in the
neighborhood of the origin. But the origin is an equilibrium point of the original system. Hence, the periodic
solution is the trivial solution, which shows that the origin is exponentially stable.

(2)
(z) = 1 fz’r (-1+15cos?t}zy + (1= L3sintcost)z, | _[ -1 1 -"51
feulz) = 27 Jo (—1-15sintcost)zy + (—=1+ 1.5sin%t)zy | 1

The matrix on the right-hand side is Hurwitz. Hence, the origin of the average system is exponentially
stable. Noting that the origin is also an equilibrium point of the original system, we conclude, as in part (1),
that the origin is exponentially stable for sufficiently small ¢.

(3) View the given system as a perturbation of the system

& =g(—2zsin’t + s sint)
Apply the averaging method to this system.

1 [ 2., 2 1

fau(z) = E./o. [-zsin®t + z%sind] dt = -52

The matrix on the right-hand side is Hurwitz. Hence, the origin of the average system is exponentially stable,

Noting that the origin is also an equilibrium point of the original system, we conclude, as in part (1), that the

origin is exponentially stable for sufficiently small £. Since the perturbation term satisfies leze~t| < g|z]et

and e™* — 0 as t — o0, we conclude from the second case of Lemma 9.5 that the origin of the given system
is exponentially stable for sufficiently small .

¢ 10.11 View the system as a perturbation of the system treated in Exercise 10{2), with e~* as the per-
turbation term. We saw in Exercise 10(2) that the origin of the nominal system is exponentially stable
for sufficiently small €. Since the system is linear, it is globally exponentially stable. Fromi part (3) of
Lemma 9.6, we conclude that z(t) tends to zero as t tends to infinity.

* 10.12 (a) Let A = MJM=1, where J is the real Jordan form of A. Then, exp(At) = M exp(Jt)M -}
and exp(~At} = M exp(—Jt)M~1. Since A has only simple eigenvalues on the imaginary axis, exp(Jt) and
exp(—Jt) are formed of sinusoidal functions of ¢. Thus they are bounded, which implies that exp{At) and
exp(— At} are bounded for all ¢ > 0.

(b)
def

£ = —Aexp(—At)y + exp(—At)[Ay + £9(t, y, €)]) = e exp{—At)g(t, exp(At)z,e) T ef(t,z,¢)

¢ 10.13 Let z; = v and 22 = ¢. Then

.| 0 1 0 def
z—[_l 0]z+e[_221c052t} = Az +eg(t, 2)

Use the change of variables z = exp(At)z to transform the system into # = £f(t, z), where

_ _ _ | cost —sint 0
f(t,z) = exp(—At)g(t,exp(At)z) = [sint cosi ][-—2(31 cost+a:zsint)cos2t]

1 .2
g sin4t 2sin®tcos2t def
[ ~2cos®tcos2t —isingt |° T F(t)z
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The average system is given by £ = eFy,z, where

1/ [0 -3
Fa.,_;/o F(t)dt-n[_% o ]

The matrix Fuy is not Hurwitz. Thus, we can only conclude that
2(t,£) = Zau(t, &) + O(€) = exp(eF,yt)Zq.(0) + Olg), for t € [0,b/e]
for a finite b > 0. Transforming this expression to the original variables, we obtain
z(t,e) = exp(At) exp(eF,t)z(0) + O(¢), for t € [0, b/¢}

» 10.14 Let z; =y and z; = % Then

._ 10 1 0 def
z—[_l O]Z+E[Sz§costJ = Az +e9(t,2)

Use the change of variables z = exp(At)z to transform the system into & = £f(t,z), where

ft,z) = exp(~At)g(t,exp(At)z) = [ cost -smt][s( 0 ]

sint cost —gy8int + 25 cost)? cost

—8sintcost (~z; sint + 73 cost)?
- 8cos?t (—zy sint + zg cost)?

The average system is given by & = £f,,(z}, where

- 29.‘.122
fau(z) = [ a:§+3:c§ ]

The average system has a unique equilibrium point at the origin, but the origin is not exponentially stable
as it can be seen by linearization. Thus, we can only conclude that

z(t, e} = T,y (t,€) + Ofe), for t € [0, b/e]
for & finite b > 0. Transforming this expression to the original variables, we obtain
z(t,€) = exp(At)zau(t,€) + O(e), for t € [0, b/e]
¢ 10.15 (1) g(y.3) = ~¥(1 — p?).

1

2n
3 A {—rcos¢(1—rzsin2¢)cos¢] do = *%T-&-%rs

Jav (") =
The average system -d‘-% = £ f4u(T) has equilibrium points at r =0 and r = 2.

‘ﬂﬂﬂ df av

dr dr =1

r=2

= -4
==-3,

r=0

The equilibrium point r = 0 is exponentially stable. Noting that r = 0 is also an equilibrium point of the
system

dr — g(,-)cos¢
i ef{¢,r,e), where f = 1-{(e/r)g(-,-)sing

we conclude that, for sufficiently small £, » = 0 is an exponentially stable equilibrium point of the foregoing
system. Noting further that ¢ = 1+ O(e), we can carry this conclusion over to the second-order system
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i +y = eg and say that its origin is exponentially stable for sufficiently small £. We can also show that there
is an unstable limit cycle in an O(¢) neighborhood of » = 2. To do this, reverse the time variable in the
original equation to obtain §+y = £g(1 — y?), which is the Van der Pol oscillator studied in Example 10.11.
Since Van der Pol cscillator has a stable limit cycle near r = 2, the current system has an unstable limit
cycle near r = 2. The same conclusion is also obvious from the foregoing analysis since reversing time has
the effect of reversing the independent variable of the average system.
(2) 9ly.9) =9(1 — %) —*.

1 2r

Jfau(r) = 5 [rcos (1 — r?sin? ¢) — % sin® @] cos ¢ dop = jr— i3
m Jo

The average system is the same as the Van der Po! Oscillator of. Example 10.11. The rest of the solution is
the same as in the example.
(3} 9(y,9) = —[1 — B /4)lyllg-

1 2 3r ‘
fan(r) = ﬂ-/o- [—1-!- T"|sm¢]]rcosz¢ d¢ = ~4r+ ir?

The average system & &= € fav(r) has equilibrium points at r =0 and r =

- _1 dfav

2 dr

dfay
dr

= L
2

r=0 r=1

The equilibrium point r = 0 is exponentially stable. Similar to part (1), we can conclude that, for sufficiently
small ¢, the origin of the second-order system is exponentially stable. By reversing time, we can show, again
as in part (1), that for sufficiently small ¢ there is an unstable limit cycle in an O(¢e) neighborhood of r = 1.

(4) 9(y,9) = —[1 - 3n/4)}3(]y.
an
fcu( [ [ 1+—r|cos¢|]rcosz¢d¢___r+

Proceed as in Case (3).
(5) 9(y.9) = ~(—¥°).
2x
fau(r) = 2i (—T'CO3¢+T3 sin3d>) cos¢p dp = -1
T Jo

Th: >verage system = € fau(7) has one equilibrium point at 7 = 0. The equilibrium point is exponentially
stable. Repeating t.he argument of part (1), we conclude that, for sufficiently small ¢, the origin of the
second-order system is exponentially stable.

(6) 9y, 9) = 9(1 ~ 4* - §°).

2
fau(r) = 1 / [1-r?sin® ¢ —r?cos® ¢] reos® p dop = — 1 / (1 ~r¥)rcos? ¢ d = 4r(1 —r?)

The average system = £ fau(r) has equilibrium points at r =0 and r = 1.
dr |,_o % dr|._

For sufficiently small €, there is a stable limit cycle in an Og) neighborhood of r = 1.
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« 10.16 (a) Apply the averaging method of Section 10.5 with g(y,%) =y + #(1 — 2 — 7).
2n
Jau(r) = 2—:;_- [rsin ¢ + (1 — r*)rcos ] cos & dip = %(r —r%)
0

The average system has equilibrium points at r = 0 and r = 1. {dfq,/dr](1) = —1. For sufficiently small ¢,
there is a stable limit cycle in an O(e) neighborhood of r = 1.

(b) There is a unique equilibrium point at z = 0.

af =[ 0 1] A12=5:I:\/52—4(1—5)
z=0 '

oz -1+¢ ¢ 2

For £ > 1, the equilibrium point is a saddle. Hence, there are no periodic orbits.

e 10.17 (a)
d%y m d?u 1 du\?| du
] 23 = _ = — - —_ —_
y o= &) dt? ku® di? ku'{ ku+)\{1 a(dt)]dt}
A MALEN I
= —y+x:[1—a(t—*) yz]y =—y+5(1—%y2)y
(b)

2
fau(r) = %/; (reos¢ — $rdcos’ ¢) cos¢ dp = 2r — 113

Proceed similar to0 Example 10.11.
(c) The phase portrait should show a stable limit cycle which approaches the circler =2 as¢ — 0.

(d) The simulation results are shown in Figure 10.6. It as clear that, as £ approaches zero, the stable limit
cycle approaches a circle of radius two.

e=1 e=0t
4
2
» 0
-2
=}
“ -2 ) 2 4
%
Figure 10.6: Exercise 10.17.
¢ 10.18 {a)
dz; dzy k 2.3 c A
3 = o —s[ m{xl+a z1) mzz-i-mcos'r
(b) The average system is given by
dz, dzs k ¢
-Efi = £Z24v, d:" =£ [- E(Zluu -+ azziau) - 53201:}
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The average system has a unique equilibrium point at the origin. Linearization at the origin yields a
Hurwitz matrix. Thus, for sufficiently small ¢ (equivalently, sufficiently large w), the system has a unique
exponentially stable periodic solution in an O(e) (equivalently, O(1/w)) neighborhood of the origin. The
frequency of oscillation is close to w.

* 10.19 Start from (10.43) of the text. For ¢t < 1/,/7, we have

VI
nlw@®ll < kyio(0) + ko (0) fo e~*s ds
< ko (0) + ko(0) (-ﬁe-ﬁ +1- e-ﬁ) = ko(0)(1 + ) (1 - e-ﬁ) 4 o (n)

It can be checked that o) {n) is a class K function. For ¢ > 1 /+/M, we have

k (1 1va ‘
el -0 (—) + Icnf e~ Ppia()) dr + kn/ e~"pAo () di
e \vi 0 1/

< sa (%) ke (0} (-——\/ﬁc"/'_’ +1- e_‘/ﬁ) + kf; e”"s dso (%)

k 1
hid —_ —e—vi| def
(e+\/ﬁ+1)a(\/ﬁ)+ko(0)(1 e ) = (1)
where we have used te~* < 1/e. It can be checked that as(n) is a class X function. Choose & class X function
a{n) such that a(n) > max{as (1), az(n)}.

¢ 10.20 The average system is £ = ¢A4,,z, where

IA

IA

1 =T
Ay = Th—ﬂ; Tf/t (sin? r +sin1.57 + e”7) dr
.1
= A7
The average system is & = jez. From the above limit calculation, it is not hard to see that the convergence

function can be taken as ¢(T) = 1/(T +1). Hence, the class X function a(7) of Theorem 10.5 can be taken
as a(n) = kn. The origin of the- average system is not exponentially stable. We can only conclude that

z(t,€) = Zao(t,€) + O(e) = “/22(0) + O(e), V¢ € [0,b/e]

{%T ~ §lsin(2¢ + 2T) - sin 2t) — i%[cosu.sc +1.5T) - cos 1.5¢] — [e~(+7) — e-‘]} =1

for a finite & > 0.
¢ 10.21 (a) We have 6§ = —ee(t)w(t) = ~cw(t)e(t) and e(t) = [8(¢) ~ " 1Tw(t) = o7 (Hw(t) = wT(t)e(t).

Then L.

¢ =0 = —cu(t)w” (t)¢ = eA(t)d
where A(t) = —w(t)wT (2).
(b) Suppose that w(t) is bounded and smooth enough to ensure that A(t) and its derivatives up to the second
order are continuous and bounded. From Example 10.13 we see that the origin of the system ¢ = cA(t)¢ is
exponentially stable for sufficiently small ¢ if

1 t+T
Ay ==~ lim = ft wirywT () dr

is Hurwitz. The matrix Agy is negative semidefinite by construction. Hence, it is Hurwitz if and only if it is
negative definite. Thus, we require that

+T
/ w(T)wT (r) dr >cl, V>0
t

for some ¢ > 0. This is a persistence of excitation condition.
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Chapter 11

e 11.1 The circuit equations are

B,Cith = —vy +v3, RaChin= %‘Ul - (1 + g—:) Vg +u

Let £ = C3/Cy and Ay = Ry = R. Multiplying the second equation through by 1/R»C;, we can rewrite the
equations as

ﬁ*i(—v+ ), €fp= ! (v1 — 2v2 + u)

1_R01 1T U2), 2-—RC,1 1 2

Setting £ = 0 results in the equation 0 = v; — 2vs + u, which has the unique root vs = %-(v; + u). Hence, the
system is in the standard singularly perturbed form.

e 11.2 The circuit equations are given above. Let £ = R;/Ry and ) = €y = C. We can rewrite the
equations as

. 1 .
€U = ——(-v1 +13), evg= [‘01 —(e+ 1) +€u]

1
R,C ReC
Setting ¢ = 0 yields the equation —v; 4+ v = 0, whose roots v = v; are not isolated. Now, similar to
Example 11.3, take z = %(vl + v2). We can take z as in the example, or simply take z = 1. We obtain

{(—z+u), ez= --1-—{23: -2+ &)z + £y

1
2RC R C

Setting € = 0 yields the equation 2z — 2z = 0 which has a unique root z = z. Hence, the system is in the
standard singularly perturbed form.

I =

® 11.3 Recall from Section 1.2.2 that the circuit is represented by
b= Sl-h(@) +2z), b= 21— Re + )
1= 7 1 T2}, T3 = I I z T U

When L is small, the inductance current z; is the candidate to be the fast variable z. Let £ = z,, z = 73,

and ¢ = L/CR2.
1

T CR
Setting £ = 0 yields the equation —z — Rz + u = 0 which has a unique root z = (—z + u)/R. Hence, the
system is in the standard singularly perturbed form.

i= é[—h(z) +7), s [~z - Rz +4)

¢ 11.4 From the block diagram, we obtain

t=2, z=-z+k[u-z-19(2)]
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Let € = 1/k and multiply the second equation through by &, to obtain
t=2, ei=-ez+u-z-9¢(2)

Setting ¢ = 0 yields the equation u —z —1(z) = 0. Hence, the system is in the standard singularly perturbed
form provided ¥—*{-) is defined in some domain of interest.

¢ 11.5 Consider equation (11.14) of the text:

dy
E_' = Q(t, Y+ h(taz)’ 0)

where (t,z) € [0,t1] x D, are treated as constant parameters. The equation has equilibrium at y = 0.
Linearization at the origin results in the matrix A(t,z} = -g-; (¢,z,h(t,x},0). We can rewrite the equation as
a perturbation of its linearization at y = 0.

d
Eg = A(t,z)y + ¥(t,z,y)

where

dy

for some 0 < o < 0. Assuming that the Jacobian matrix is Lipschitz in y, we know that there exists a
constant k, independent of (¢, z) such that

Itz p)llz < &llpll3, v (t.2) € [0,41] x D,

Bit,z,y) = [g-ga,x,ay +h(t,2),0) ~ e,z h(t, z),m] y

The matrix A(¢,z) is a bounded function in (¢,z) and satisfies (11.16). Suppose further that the partial
derivatives of the elements of A(f,z) with respect to ¢ and z are bounded. Then, from Lemma 9.8, we
conclude that there is a Lyapunov function V(t,z,y) that satisfies inequalities

av ov
alvlf <Veoy <alul  Fata<-ol |5 <ot
2

where the constants ¢; to ¢4 are independent of (¢,7). The derivative of V with respect to (11.14) satisfies

av av
ag(f,z,y + h(t’ 'T)!O) = a_y[A(t)-T)y + ¢(t|$| y)] < —Csﬂyng + qk“y"g < —%c:i"!lug

for |lylla < c3/2kcq. Thus, V{1, z) satisfies inequalities (11.17)~(11.18). Going from here to inequality (11.15)
is the subject of the next exercise.

» 11.6 Suppose V satisfies (11.17)-(11.18). The derivative of V' with respect to (11.14) is given by

dav oV
= g< ol < - z—zv

dr 8y
= V(r) < e BV(0) = liy(n)ll < \/ge‘%*uy(om

Hence, (11.15) is satisfied with k = y/ca/c1 and v = ¢3/2¢2. To ensure that |jy(t)|] < p for all T, we restrict
Ny (@)l to ify(O)lf < po = pv/c1/ca.
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e 11.7 (a) Setting ¢ = 0 yields A(z) = 7 + 1. The reduced model is

=22 +1, 2(0) = £ = (t) = %m (tv2+tan™! (5\/5))

The boundary-layer model is
d -
F ey y O =1-(+6) = g =l -1+ e

Thus,

z{t,€) % tan (t\/§ +tan™! (E\/E)) + O(e)

2te) = 1+1 [tan (n/:? +tan™! (e\/é))] ! = 1+ )= + O()

(b) The simulation results are shown in Figure 11.1.

ex=01 e=01
2 as
— Exact 3 ;
15 - - Approximate / 25 ’
/ rd
’ 2 ’
x 1 . 4 N d
- 15 -7
P4 - -
- - o
05 - 1
P 05
- -
] 0
° 0.2 o4 06 08 0 02 04 06 08
e=0.05

2

15 A
r
r
»x 1 , 4
rd
.
- bd
05 =
-
- — =
ol
o 0.2 0.4 08 0.8

Figure 11.1: Exercise 11.7.

¢ 11.8 (a) Setting € = 0 yields h(z) = —2z. The reduced model is

t

t=-z, z{0)=n = #(i)=ne”

The boundary-layer model is

__ 2 a7 —
F =t (Jy), w0 =n+2

Denote its solution by g(r}. Thus,
z(t,e) =net + Oe), z(t,e) = =2ne~" + §(t/e) + Of¢)

(b) The simulation results are shown in Figure 11.2. As you decrease £, the exact and approximate sclutions
will come closer to each other.
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Figure 11.2: Exercise 11.8.

e 11.9 Setting £ = 0 yields 2(2,z) = In(1 + u(t) — z), assuming that (1 + u(t) — z) > 0. The reduced model
is .
£=In(1+u(t)—z)

The boundary-layer model is
dy

H o (eV — _
o (e¥ = 1}(1 4+ u(t) —z)
Linearization of the boundary-layer model at y = 0 results in the linear system
dy
i -1+ u(t) - z)y

Assuming 0 < ¢ < [1+u(t) -~ 1] < c2 < o0 ensures that the origin of the boundary-layer model is
exponentially stable uniformly in (¢, z).

© 11.10 (a) Setting £ = 0 yields 0 = (z + zt)(z ~ 2)(z ~ 4) which has three roots hy(t,z) = —=zt, hy = 2,
and hy = 4. We assume that z¢ > 0 is the domain of interest. Then, the three roots are isolated. Each root
could give rise to a reduced model.

(b) For hy(t,z) = —xt, the boundary-layer model is

dy
& = vly-zt-2)(y-at-4)

The Jacobian 8g/8y at y = 0 is given by

% Vo = —(zt + 2)(zt +4) < -8

166



Hence, the origin of the boundary-layer model is exponentially stable uniformly in (¢, z). It is also clear that
y < zt + 2 is the region of attraction. Transformed to the z variable, the region of attraction is z < 2. For
hs = 2, the boundary-iayer model is

dy
7 = "yl +zt+2)(y - 2)
The Jacobian 8g/8y at y =0 is given by
% =22+zxt) >4
ay y=0
Hence, the origin of the boundary-layer model is unstable. For h; = 4, the boundary-layer model is
dy
- =- t +4 2
3, = Yyt + 4y +2)
The Jacobian 8¢/3y at y = ( is given by
9 = =2zt +4) < -8
B,

Hence, the origin of the boundary-layer model is exponentially stable uniformly in (¢, z). It is also clear that
y > —2 is the region of attraction. Transformed to the z variable, the regicn of attraction is z > 2.

(c) For a < 2, z(0) belong to the region of attraction of the root z = hy, while for @ > 2, it belongs to the
region of attraction of the third root z = hy. Thus, for a < 2, the reduced model is

T=-z, z(0) =1

and for a > 2, the reduced model is
i=1z%, z(0)=1

An O(e) approximation can be obtained by using expressions (11.20)-(11.21) of Tikhonov's theorem.

e 11.11 Setting £ = 0 results in z = sin?. The reduced model is # = —z and the boundary-layer model is
dy/dr = —y. Clearly all the assumptions of Theorem 11.2 are satisfied. Hence, the O(e) approximation

z(t,e) = e7'z{0) + O(e), z(t,e) =sint + e~ z(0) + O(e)
holds uniformiy in ¢ for all £ > 0.

e 11,12 The manifold equation is

—H — 2% 4 4¢218/3 _ 2
oz

tH*=0
It can be easily checked that H = —z*%/3 satisfies this equation.
¢ 11.23 The manifold equation is
in? az 2az BH
—{H —sin® z){H — e**)}{(H ~ 2e )+£-3-;2H =0
At £ = 0 we have three equilibrium manifolds
H, =sin’z, H; =e%®, Hjy=2e%%

The Jacobian dg/8z is negative on H, and H; and positive on H,. Hence, H; and H; are attractive.

167



e 11.14 (a) The manifold equation is

Anx + Azz?‘[ - E%(Au:r + A12’H) =0
Let H=-Lx.

[(Azl ~ Ags L} + EL(AH - AuL)]:L‘ =0
Thus, if L satisfies the equation

(Azl — A22L) + EL(AH - A12L) =0

z = — Lz will be an exact slow manifold.
(b) Let p = z + Lz. Then

T = AnT+ Awie(n—Lz) = (A ~ AaL)z + Apan
ey = egz4elz
= Anz -+ An(n— Lz} + eL{(An — A1aL)z + Ayan]
= (A2 +eLAp)n

where we have used the equation satisfied by L. The system is in a block triangular form.
(c) Since the system is in block triangular form, its eigenvalues are the eigenvalues of the diagonal blocks
(Anx — Ar2L) and (A2 +£LA1z)/e. Thus, there are n eigenvalues of order O(1) and m eigenvalues of order

oQ1/e). .
(d) Let £ =z — ¢Hn. Then

E. = (Ayy -~ AaL)+ [5(1411 — A12L)H - H(Agz +eLA) + Alglﬂ

which reduces to _
§=(An — AppL)¢

when H satisfies the equation
e(An - Ay LYH — H(Azz +eLAp)+ A2 =0

Thus, the change of variables
§=z—-cHn=z-cH(z+Lz)=(I~ecHL)x—eHz, n=Lz+z
transforms the system into the block diagonal form
£ = A,(e)¢, where 4, = Ay — AL
en = Ay(e)y, where Ay = Ay + LAy,
(e) The inverse of the foregoing transformation is given by
z={+¢ecHnp, z=-Lz+(I-cLH)

From the first equation it is clear that the component of the fast mode 5 in z is O(¢). .
(f) Setting e = 0 in £ = A,(¢)¢ gives the reduced model £ = (4,; — A12A7;' 421)Z. Hence, £(1) = Z(t}+O(e).
Setting £ = 0 in d/dr = As(e)n gives the boundary-layer model dij/dr = Agaj. Thus, n(r) = §(r) + O(c).
Therefore
= £+eHn=2+ O¢e)
z = ~Lz+(I-eLH)y = —AZ}AnZ+ 5+ 0()

where we have used L = A%, Az, + O(e).
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e 11.15 Application of the transformation of Exercise 11.14; namely,
Al | I-eHL -¢H x
zZ | L I z

results in _ .
X = A X + B,u, eZ=A; Z + Bf'u

where
A, = An - Al = A4+ 0(E)
= Agp+eLAyp = Agp+ OHe)
(I “EHL)B] —HB, = BQ+O(E)
By = By +eLBy, = By + 0O(e)

o
o

Furthermore, z = X' +&¢HZ. Since Ay, is Hurwitz, so is Ay, for sufficiently small . Thus, Z{(t,¢) is uniformly
bounded for all ¢ > 0. Therefore,

z(t,e) - X(t,e}=0(), Vt>0

(a) Application of Theorem 3.4 shows that X'(t,c) — Z(¢) = O(£) on any compact time interval. This implies
that z(t,£) — Z(¢) = O(c) on any compact time interval.
(b) Let e=X—1Z.

é= A,X + B,u— AgZ — Byu = [Ap + O(e)]e + O(¢)
Since Ao is Hurwitz and e(0,£) = O(g), we conclude from Theorem 9.1 that e(t,g) = Ofe) for all t > D.
Consequently, z(t,&) — Z(t) = Oe) for all ¢ > 0.

e 11.16 (a) Setting ¢ = 0 yields the equation tan~2{1 — z; — z) = 0, which has a unique root z =1-z, def

h{z). The reduced model is

) = ITq, Tg=—x1—-Fa+1
The boundary-layer model is _
fy_ = —tan™} ¥
dr

(b} Let W(y) = 3y be a Lyapunov function candidate for the boundary-layer model. Then

dw
Fy—(—tan‘ly) =-~ytan" 'y <0, Vy#0

Hence, the origin of the boundary-layer model is globally asymptotically stable. For jy| < a, we have
dW . 1. 4 4
(- < - =
a7 (—tan" ) < atan (a)y

which shows that the origin is exponentially stable. Of course these stability properties are uniform in =
since the bondary-layer model is independent of z.

(c) Let Z(t) be the solution of the reduced model starting from initial conditions x;(0) = z2(0) = 0. Let §{r)
be the solution of the boundary-layer mode] starting at y(0) = z(0)—1+z:(0) = —1. An O(e} approximation
can be obtained by using expressions (11.20)-(11.21) of Tikhonov's theorem. Simulation results are shown
in Figure 11.3.

(2) The conditions of Theorem 11.2 are satisfied.

(e) The system has a unique equilibrium point at x; = 1, 72 = z = 0. Applying a change of variables to
shift the equilibrium to the origin, we can rewrite the state equation as

t=Az+ B(z+Cz), ei=—tan"(z+Cx)
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Figure 11.3: Exercise 11.16.
where 0 1
— — 0 —
=[5 4] 8=[0] =1 o)
Use the notation of Section 11.5. The matrix A is Hurwitz. Let P be the solution of the Lyapunov equation

PA+ ATP=—1. Ttis given by P = [ (1): 05 ] Let V(z) = 27Pz and W(y) = 14?. Then

av
55 /@ h@) = —ll=zlff = o1 =1,41 = ||zl

%9(&&' +h(z)) = —ytan~'y < ~azlyf*, ¥ |y| < o, where az = %tan'l(a), v = |y
g—:'[f(‘-",y+ h(z)) = f(z, h(z))] = 22T PBy < 2||PB|izl|zlizly| = V3lzil2lyl = 8 =5
h
[g SOV SmuahE) = vCHEy+hE) = ¥CAz+yCBy = yChs

1A

ICAllallzll2lyl = llzlizlyl = F2=1,7=0

Hence, the origin is asymptotically stable for £ < £*, where
£* = ap g _ 1 tan—
oY+ bz avs

It is also exponentially stable (see Exercise 11.24). Based on this analysis we cannot conclude global asymp-
totic stability.

1g

¢ 11.17 (a) Setting £ = 0 yields the equation z ~ 22 — z = 0, which has the unique root z = 7 — z? = h(z).
The reduced model is £ = —z. The bondary-layer model is ‘-:{E = —y.
(b) The boundary-layer model is linear and independent of z. Its origin is clearly globally exponentially

stable.

(c) Let Z(t) be the solution of the reduced model starting from the initial condition z{0) = 1. It can
be verified that Z(t) = e™*. Let §(r) be the solution of the boundary-layer model starting at y(0) =
z(0) — £(0) + z*(0) = 1. It can be verified that §(7) = e~". An O(e) approximation is given by

z{t,£) = e + O(e), z(t,e) =et—e % £ et 4 Ofe)
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Figure 11.4: Exercise 11.17.

Simulation results for £ = 0.1 are shown in Figure 11.4.
{d) The conditions of Theorem 11.2 are satisfied.
{e) The system has a unique equilibrium point at the origin. Let V(z) = %x’ and W(y) = % y2. Then

v
E“f(@', h(z)) = =z = o1 = 1,94 = 7]

%g(w,y +h@) =-%, = az =142 =y
O [f(ey+h@) - fla b)) = oy < felly] = B =1

ow oW oh

o E feuera) = -2zt

< (+2a)allyl+ (1+2a)y?, ¥ |z| S 6, = B2 =y = (1+2a)

Hence, the origin is asymptotically stable for ¢ < &* = ayaa/(ary + Bi182) = 1/[2(1 + 22)] It is also
exponentially stable (see Exercise 11.24). Based on this analysis we cannot conclude global asymptotic
stability.

e 11.18 (a) Setting £ = 0 yields the equation ~22%/3~22 = 0, which has the unique root z = —z*/3 £ j(z).
The reduced model is £ = —z°. The bondary-layer model is % = -2y.

(b) The boundary-layer model is linear and independent of x. Its origin is clearly globally exponentially
stable.

(c} Let Z(f) be the solution of the reduced model starting from the initial condition z(0) = 1. It can
be verified that Z(t) = 1/(1 + 4¢)*/4. Let §(r) be the solution of the boundary-layer model starting at
(0) = z(0) + z*/3(0) = 2. It can be verified that §(r) = 2e">". An O(¢) approximation is given by

1 1
z{t,e) = m—ﬁ— + O(g), z(t,ge) = — m + 2e~ 2/ 4 Ofe)

Simulation results for £ = 0.1 are shown in Figure 11.5.
(d) The conditions of Theorem 11.2 are satisfied.
() The system has a unique equilibrium point at the origin. Let V(z) = $2% and W(y) = 142, Then

ov
5o /@h@) =z = a1 =14 =|af°
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Figure 11.5: Exercise 11.18.
ow
By 9@y () = -7, = ;m=2¢ =yl
28[(y — 2*°) + =¥

= 28(y% + 3923 - 322Y/%) < 28(y® + 3y2®/?)
< By

%%[f(q:,y + h(l‘)) - f(zs h(:t))]

[ aw oW bh

4,1/3 _ .4/8\3
55 By 0z y(zz )z(y =)
= —zl/syzs + %y’x‘/s(yz +3a:B/3—3yz4/3)
S Bata + 13

where the last two inequalities hold on compact sets. For example, on the set {|z| < e, §y| < b}, the
constants §;, Az and v are given by
B =a(¥ +3a%%), By =46, 4a"/3(b? + 30*/° + 3ba*/)

Hence, the origin is asymptotically stable for £ < £* = ayaz/(e17 + 51 82)- The Lyapunov functions V and
W do not satisfy the exponential stability conditions of Exercise 11.24. Linearization at the origin yields

] F @y + h(z))

the matrix 3 _g /e which is not Hurwitz. Hence, the origin is not exponentially stable. Based on this

analysis we cannot conclude global asymptotic stability.

¢ 11.19 (a) Settinge = 0 yields the equation —z — z = 0, which has the unique root z = —z %" h(z). The

reduced model is # = —z° — tan~! z. The boundary-layer model is $¥ = —y.
(b) The boundary-layer model is linear and independent of z. Its origin is clearly globally exponentially

stable.

(c) Let Z(t) be the solution of the reduced model starting from the initial condition z(0) = —1. Let
#(7) be the solution of the boundary-layer model starting at y(0) = 2(0) + z(0) = 1. An O{¢) approximation
can be obtained by using expressions (11.20)-(11.21) of Tikhonov’s theorem. Simulation results for ¢ = 0.1
are shown in Figure 11.6.

{(d) The conditions of Theorem 11.2 are satisfied.

(e) The system has a unique equilibrium point at the origin. Let V(z) = [ (y3+tan~' y) dy and W (y) = 14*.
Then

-1

Y fehe) =~ + a0 2 = = 1,4y = |2 + tan~' g
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Figure 11.6: Exercise 11.19.

ow

3y g(z, ¥+ h(z)) = 3%, = 02 =Ly = |y

(z® + tan™? z)[tan " (z) — tan~' (z — y)]

av
52 1@y +hi@)) - f(, k()]

< e = fi=l
(5 - 5] Sy +hia) = y[- -]

= y[-z*-tan 'z +tan"'z - tan'(z - y)]
< it t¥) > fr=v=1
where all inequalities hold globally. Hence, the origin is globally asymptotically stable for ¢ < &* =

The Lyapunov functions V and W do not satisfy the exponential stability conditions of Exercise 11.2
Linearization at the origin yields a Hurwitz matrix. Hence, the origin is exponentially stable.

B D3

e 11.20 (a) Setting £ = 0 yields the equations
0=z, 0=—-29—-(z+21+2z21)

0

—z ] The reduced model is & == —2z. The bondary-layer model is

Thus, h(z) = [

dy -1 0
ar =A@, Al)= [ —-(1+2) -1 ]

(b) The condition (11.16) is satisfied on any compact set B;. Therefore, the boundary-layer model is expo-
nentially stable, uniformly in z, for all z € B,.

(¢) Let Z(2) be the solution of the reduced model starting from the initial condition x(0) = 1. Let §(r) be the
. % (0 1 . .
solution of the boundary-layer model starting at y{0) = [ " (0)1_('_2‘ © ] = [ 2 ] An O(g) approximation

can be obtained by using expressions {11.20}—(11.21) of Tikhonov’s theorem. Simulation results for £ = 0.1

are shown in Figure 11.7.
(d) The conditions of Theorem 11.2 are satisfied.
(e) The system has a unique equilibrium point at the origin. By linearization, it can be shown that the
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Figure 11.7: Exercise 11.20.

origin of the reduced system is exponentially stable and the origin of the boundary-layer system is exponen-
tially stabie uniformly in 2 on any compact set of 2. It follows from Theorem 11.4 that the origin of the
full system is exponentially stable for sufficiently small e. An upper bound ¢ can be calculated by using
the Lyapunov functions V(z) = }z% and W(z,y) = y7 P(z)y where P(z) is the solution of the Lyapunov
equation P(z)A(z) + AT (z}P(z) = ~1I. -

¢ 11.21 (a) The equilibrium points satisfy the equations
U=Rily, Va=alft+ R, 0=calsl,—cd

From the first equation, we obtain I; = U//R;. Substituting for { from the second equation into the third
one, we obtain

ercalU?

(C3Ru + R?f ) I, = eaVy

This equation has the unique root

(:3% Cz‘;nU/R_f

c3Re +C1CQU2/R} c3 R, +01C2U2/R§

I

(b)
_ 0 _ i

& y s ) PP &
l_dt'-— fdt _Ij s Rf =Thtu

. dxz _ Lj . ch;-] CzIaIf L_fCa
Ig = TI'I = RIJQ [CQIquIIZ Caﬂ.‘rg] = *R—f-j _C:;TZIZ - I2J = E-j—(zlz — Iz)
. _ Ta,dz  Tdis _ 1 aly 1
£z = Tf Tf 7 . ?u__—-t_ = E [—Ia - Ra Tyxg + -"R';-Va]
. C;Ifﬂx e+ Ve -y CIC2U2I + Ve
LR, T LR T RS VT LR,

(c) Setting £ = 0 yields 0 = —z ~ bz z3 + ¢. Hence, h(z) = —bz 22 + ¢. The reduced model is
i =-z1+u, &2=—ax~ abziz, +aca

The boundary-layer model is g‘j = —y.
(d) The boundary-layer model is linear and independent of z. Its origin is clearly globally exponentially
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stable.

(e) Use expressions {11.20)—(11.21) of Tikhonov's theorem.

(f) For any constant input u{f) = up, the reduced system has a unique equilibrium point. Using Lineariza-
tion, it can be shown that this point is exponentially stable. Hence, the conditions of Theorem 11.2 are
satisfied.

(g) Simulation results for € = 0.2 are shown in Figure 11.8,

1 12
0.8 1 72
/4
08
06
= ~N0.8
041 [ |— Exact 04
- Approximate
0.2 02
0 0 0 :
0 2 4 ) 2 4 0 2 a

t 1 t

Figure 11.8: Exercise 11.21.

* 11.22 Setting € = 0 yields z = —z/a. The reduced model is # = —7(z) — z and the boundary-layer model
is dy/dr = —y. Let V(z) = }2? + J; n{c) do and W(y) = 3¥%. Then

g—:f(x,h(x)) = —|z+n(=)?, ¥z € (—00,b}, = a1 =141 = |z +n(z)|

ow

By YV RE) =~ S ea=L =1y
av
S U@y +h@) ~ £z h@) = azy S sty > Bi=a
W 8h
|5 - S 5] 1@+ @) = Syl + oy =2 < Lol 4 n@l + 4 = 2= 1y

Hence, the origin is asymptotically stable for all £ < ¢* = 1.

e 11.23 (a) Linearization at the origin yields the matrix [ g __? Je ] which shows that linearization fails.

(b) Setting £ = 0 yields z = tan~! #>. The reduced model is = —2z° + (tan—! z*)? and the boundary-layer
model is % =g% —tan(y +tan~'2%). Let D = {|z} < cand |y + tan~}(z?)| < b < r/2} All our analysis
will be restricted to the set D. Let V(z) = $z* and W(y) = 1y%. Then .

av
g /@) = -2+ P tan T PP < 2 = oy =Ly =2

where we have used the property z(tan™!2)? < z2.

aw
——9(z, ¥+ h(z)) =y —ytan(y +tan"' 2%) < - = ar = 1,1 = |y|

8y
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where we have used the property z[tan(z + &) — tan b} > 22.

S U@y + )~ 1o, haN)] = 2'yly + 2ta0™ 23) < Aol

Bz " oy bx T3 o6 2+ (tan™ 2 4+ ytant 2 + %) < Balallyl + 1yl

where £, B> and v depend on the constants a and b of the set D. Thus, the origin is asymptotically stable
for all £ < &*, where £* is given by (11.46). The Lyapunov function is »(z,y) = (1 - d*Wi(z) + &*W(y),
where d* = §1/(1 + B2). The region of attraction can be estimated by the set {v(z,y) < ¢}, where

¢ = mingp{r(z,y)}.

¢ 11.24 The inequalities satisfied by V' and W imply that v(z,y) = (1 — )V (z) + dW (y) satisfies the

inequality ” ; ]"2 Suzy) < [ ; ]“2

for some positive constants ¢; and cz. When ¥y (z) = ||z|| and ¥ (y) = |[y]], the inequality & < —y/T Ay, for
some positive definite matrix A, implies
H
y

for some positive constant c;. Then, by Theorem 4.10, the origin is exponentially stable.

[aw 6W6h] £z, +hiz)) = — 3z%y

1

2
l-l<—63

* 11.25 (a) By smoothness, there is a positive constant L such that

”g(a:,y) - 9(3,0)"2 .<.. L"y"2
v = (1-dV(z)+dW(y)
Vv
b= (-5 e+ 5 Uy + ety
ov av d

= (1 - d)gf(.t,ﬂ) + (1 - d)"é';[f(’;:y) - f(I,O)] - EyTy"’ 2dyTP91(-T, y)

< —(1=d)me-+ (- Dkt = S5y + 20kl Pllad Ayl + 24LIP Yl

= ~(=dodi + (- Dot + davavia — i + i

where 1 = ks, B2 = 2k1||Pll2, v = 2L)| Plls, ¥1 = ¢'/2, and 9 = [jy|l;- Hence, the origin is asymptotically
stable for sufficiently small €.

(b)

v = V(z)+ (yTPy)"

vo= %:— f(z,0) + %;[f (2.9) = f(@, 0]+ 7 (" Py)" ™ [-— %yTy + 297 Py (s, y)]
S —ead+ kbl = T Omin (P N + 7 Ormas (P 372 x 20lyallPla (ks ¢ + Lilylo)
= —ng+ kol ~ 2 Omin (P gl + 29ksl|Pladpli3 ™ + 29LU Pyl

Using Young’s inequality with p = 1/b and arbitrary u; > 0, we obtain

1 _
#*liylls < u—1¢+n‘;"" BlyliE
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Using Young’s inequality with p = 1/a = 27y and arbitrary gz > 0, we obtain

- 1 _
CllyllE™ < H—zwnz"”* Dyl

Hence,
v < —c1¢—callylla”
where
- ks 2v9k3])P|l
crt=a —— — —
H H2

2= T Qeuin (PN = assd/ ™ — 24k | Pl @7 — 2L Pl

Choose p; and p2 large enough to make ¢; > 0; then choose £* small enough such that ¢; > 0 for all £ < ¢°.
{c) Consider the second-order system

g=-z+y, e =-y+en(s)
Part (a) requires |91 (z)] < k1|a|, while part (b) requires g1 (z)| < kslof?®, 0 < a < }. Take g (z) = /2.
» 11.26 Let y = z + A~In(z) and rewrite the equation as
i=flz,y-An(z), eDy=Ay+ EDA‘I%

The derivative of v{(z,y) = (1 — d)V(2) + dyT PDy along the trajectories of the system is given by

i o= (=g fa - AT ) + (- DL [f(ey - A7) - f(z, 47 (2))]
-S4 Qu+ 2847 PDA™ 2 f(a,y - A7 n(a)
Suppose that
3 1@ —ATn(a) < ~cvd(a)

O [f@y - 47 "0(@)) - @, -4~ n(z)] < Aot ()l

T

|52y - 470tz

where the constants 8 and v are chosen to independent of the elements of the matrix D which is possible
since the elements of D are bounded by one. Now setting &z = Amin(Q) and ¥2(y) = |ly|[;, we see that &
satisfies the same inequality ¥ < —~1T As) that appears on page 452 of the text. Thus, we can continue to
prove that the origin is asymptotically stable for sufficiently small .

2 < khr(z) + kollullz = 2yTPDA“5;f(z,y — A7n(2)) € Bathn(2)llyll: + IIwli3

# 11.27 Setting £ = 0 resuits in z = —z;25. The reduced model is
zy = —(z2 — a)zy, ig = bx?

The boundary-layer model is gf} = —y. We analyzed the reduced model in Example 4.10. There we saw that
the reduced model has an equilibrium set {x; = 0}. Using the Lyapunov function V(z) = 322 + (1/2b)(z2 —
k)2, k > a, we applied LaSalle’s theorem to show that ail solutions approach the equilibrium set as t — oo.
In the current singularly perturbed system, it can be checked that {z; = 0, z = 0} is an equilibrium set.
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We will prove that all solutions of the singularly perturbed system approach this set as t — oo. Apply the
change of variables y = z + z122. Then,

£ = —{z2-a)z1+2
Ep = b:rf
ey = -y+e[—(z2 —a)zyzz + 2yzy + b}

Let W(y) = 3y°. The following inequalities can be easily checked.

%gf(x,h(z-)) = —(k—a)z? = —9¥(7), where a1 =k—a>0, (z)=|z1]

oW
——9(z, v + h(z)) = —y* = ap¥i(y), where oz =1,v = |y

3
S [f @y + h(e)) = £(z Me)] = 221 < brva (@Waly), where B =2
&8
[68_1’: - %’.%/'a_:] f(ﬂ?,y + h(-'ﬂ)) = —yr17T2 (;!:z - G) + 2233,‘2 + bz?y < By (I)'qbz(y) + 'nbg(y)

where Sz and 7 are positive constants such that the domain of interest is a subset of the set D defined by
D = {2z; < v and |bz? — 23(z2 — a)] < o}

By comparison with the proof of Theorem 11.3, it is now clear the the derivative of v(z,y) = (1 — )V (z) +
dW (y) along the trajectories of the system satisfies the inequality ¥ < —47 Ay, where the matrix A is
positive definite for sufficiently small £. Hence

v < =My} +¥2(), A>0

The difference from Theorem 11.3 is that in the current case the foregoing inequality shows only that # is
negative semidefinite because y;(z) = |r;) is not a positive definite function of z; that is, it vanishes at
z; = 0 for all values of z3. It is clear though that all solutions starting in {¢(z,y) < ¢} C D will remain in
this set for all £ > 0. Moreover, by Theorem 8.4, we conclude that z;(t) and y(t) tend to zero as t = cc.
Consequently, z(t) = y(t) — 21(t)z2(t) tends to zero as t — co.

e 11.28 View the given system as a perturbation of the system
By =z3, ITpg=-TIp+z, ¢€z= —(1'1 +Z)—(1‘1 +Z)3

The perturbation term satisfies |e~*z| < e~*|z|. It follows from Corollary 9.1 and part 2 of Lemma 9.5 that
if the origin of the nominal system is globally exponentially stable, so is the origin of the perturbed system.
Thus, we only need to show that the origin of the nominal system is globally exponentially stable. We use
the singular perturbation stability analysis. Setting ¢ = 0 results in z = —2,. The reduced model is

I = z3, &y =~z — T

0
-1
V(z) can be taken as V(z) = z7 Pz, where P is the solution of the Lyapunov equation P4 + ATP = —1I.
Inequality (11.39) is satisfied with ¢y (z) = |{z]| and &, = 1. Define y = z + z;. The boundary-layer model
is 3 = —y — 4. The function W{y) = 13 satisfies

dr
oaw
-5;(-:: - == -yt < -y

This is a linear time-invariant system with a Hurwitz matrix 4 = [ 11 ] A Lyapunov function

2
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Inequality (11.40) is satisfied with #2(y) = |y} and a2 = 1. Let us verify the interconnection inequalities
(11.43) and (11.44).

O ey + W) ~ Sas e =227 | § | < 20PBlliel

oW Oh o
5 g (@8 + k() y 0] [ oty ] yr2 < flzll2lyl
where B = (1) . Thus, all the conditions of Theorem 11.3 are satisfied globally with o) = 1, a2 = 1,

B = 2||\PB|jz, Bz = 1, and v = 0. Since V(z) and W(y) are quadratic functions and 1 (z) = [lzllz and
Waly) = |y|, we conclude that the origin is globally exponentially stable for 0 < e <¢* = 1/2||pBl}s. Notice
that we cannot conclude global exponential stability from Theorem 11.4 because the term (z1 + z)? is not

globally Lipschitz.
e 11.29 (a) Note that tan™!(z) is globally Lipschitz with a Lipschitz constant equal to one because

d . 1
d—ztan (z)."1+22

With y = z + z, the unforced system is given by

t=—z+tan" Y~z +y), ey=-y+e[-z+tan " (-z+y)]

Let v = 3z° + 3t
2
v = -z+ztanl(-z+y) - e y[—z + tan~(—z + )]

2
= -z —ztan~Y(z) + z[tan~}{~z + y) — tan"}{-z)] - y? —zy+ytan~ (—z +y)
2

= —zz-—xtan"(z)—%«ky -x+tan“(~—a:+y)], 0<(<l

[ T
14 (—z+{y)?

2

y2
< =zt -t yl sl lul | -2+l
T
< -[B TS ]
= ! -1 - |yl

The 2 x 2 matrix is positive definite for e < &* = -;- Since v and the upper bound on ¥ are quadratic and
the charlage of variables y = z + z is linear, we conclude that the origin is globally exponentially stable for
?lli)eljptialt-tmstate stability follows from Lemma 4.6. -
e 11.30 (2) The closed-loop system is given by

=20, Zog=—I3—2T2+2, €£i=—2—yP(2z;1+z3)
Setting ¢ = 0 results in z = —1(2z1 + 2) = h(z}. The reduced model is

i1 =z, &2 =—21 - 22— Y(22; + 22)

The boundary-layer model is g’} = —y,
{b) The reduced system can be represented as a feedback connection of the linear system

1 =x3, Eg=-—-X —2ap+u, y=2r+z2
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and the nonlinear function u = —(y). The transfer function of the linear system is G(s) = (s + 2)/(s+1)2.
For any k > 0, the transfer function 1 + £G(s) is strictly positive real because

2k
>0, VweR

1+ kRe[G(jw)] =1+ U-_'*';E—)—

and 1+ kG(co) = 1 > 0. Thus, by Theorem 7.1, the system is absolutely stable for any finite k > 0.
Moreover, a Lyapunov function is given by V(z) = %zTPz, where P satisfies equations (7.6)-(7.8). We
replace € in (7.6) by p > 0. Thus, V(z) satisfies (11.39) with &) = 1pAmia(P) and yy(z) = J|z]l;. For
the boundary-layer system, W{y) = %yz satisfies (11.40) with ez = 1 and v2(y) = |y). Let us check the
interconnection conditions (11.43) and (11.44).

TV @y +hE) - 1 @] =P [ O | < IPBlalilobl, where 5 = 7]

Thus, (11.43) is satisfies with 8, = ||PB],.

oW oh
—Ta—y-—af(Iyy + h(ﬂ?)) = mb’(2:!:1 + 32)[2:52 — Ty =213 4y — ¢(231 + :L'z)]

Suppose that ¥'(-) is globally bounded. Then,

oW 5h
~ 55 527 @y + h(@)| < Livllellz + L*VBlylllellz + Lyl

where L is a Lipschitz constant for ¢. Hence, (11.44) is satisfied with 8; = L + L?V/5 and -y = L. Thus, all
the conditions of Theorem 11.3 are satisfied globally and we can conclude that, for sufficiently small £, the
origin is globally asymptotically stable; that is, the system is absolutely stable. If ¢ is not globally Lipschitz,
it will be Lipschitz on any compact set, due to smoothness. In this case, we can conclude absolute stability
with a finite domain.
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Chapter 12

e 12.1 We represent the closed-loop system as a perturbation of its linearization at the origin.
Z=(A-~BK)x + Bg{z)

where

A-BK= [ _10(2.5(:_1/\/5) __110],35 [2] 9(11)=—10[sin(zl+%)—\/i§—%]

It can be easily seen that |g(z,)| < 5zf. We use V(z) = 2T Pz as a Lyapunov function, where P =

[ ;gi}gg gg;i’g ] is the solution of the Lyapunov equation P(4 — BK) + (A = BK)TP = —1I.

—zTz+ 22T PBg(z1) < —lizll} + 2lizll2|| P B|252

V(z) =
< —[1-0.5386{z;)]l|lz}lZ < 0, V |z1| < 1.8567

Hence, V(z) is negative definite in the region {|z;] < 1.8567)}. We estimate the region of attraction by
Q. ={ V(z) <c} C {lz:] < 1.8567}. It can be verified that

_ (1.8567)%)

. T WR.5007)7)
Iz,gllﬂlsaﬁ'r{z Pz} = LTp-1L 6.2216

where LT = [1 0]. Thus, we estimate the region of attraction by the set {V(z) < 6.22}.

# 12.2 (1) Linearization at the origin yields

Azg—i(o,m.—_[; ;] B=gu+f(0,0)=[(1)], c=g—:(0)=[o 1]

- () The state feedback control u = —Kz = — [ 7 4 ] z assigns the closed-loop eigenvalues at —1 and —2.
{(b) Use the observer-based controller

2=(A-BK - HC)i + Hy, u=-K#

with K as in part (a) and H = { 1113 ], which assigns the observer eigenvalues at —5 and —6.

(2) Linearization at the origin yields

1 10 0
PP =% 00)= _ %=
A_aI(O,O)-[ 01 g éJ B_au(o,())_[(l)], 0_32(0)_[0 1 0]
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(a) The state feedback control u = —Kz = =[ 16 17 7 ]z assigns the closed-loop eigenvalues at —1,
—2, and 3.
(b) Use the observer-based controller

t=(A-BK-HC)i+Hy, u=-Ki

=335

with K as in part (a) and H = [ 19 J , which agsigns the observer eigenvalues at —5, —6, and ~7.
~210

(3) Linearization at the origin yields

-1 1 o0 0
_ =] 1 - 0o Ok _
A_ax(0,0) [; 01 -02], B—c'm(o’o)_[(l]]' C—az({))—[l 0 0]

(a) The state feedback controlu = -Kz=—-[1 2 0 | = assigns the closed-loop eigenvalues at —1, -2,
and -3.
(b) Use the observer-based controller

&=(A-BK-HC)i+Hy, us=-Ki

9
with K as in part (a) and H = { 21 } , which assigns the observer eigenvalues at —5, ~6, and —2.
1
» 12.3 Use the PBH controllability test.
-9In -4 0 B
rank[sf,.+,,—A B]=rank[ "o o, O]

For s #0, rank [SI:Z,A s(IJ',, g]=p+rank [ s — 4 B ]
_ 8ln— A 0 Bl _ A B
For s =0, ra.nk[ _C sl 0]-ra.nk[c 0]

Hence, (A, B) is controllable if and only if (4, B) is controllable and the rank condition (12.23) is satisfied.

® 12.4 () A state feedback integral controller is designed in Example 12.4. For output feedback, use the

observer .
i=(A-HC)2+Bu+Hy

where y = 8 ~ 4, and replace é by 2, in the control law. The observer gain H is designed such that

B —hy 1
A-HC = [ —hg ~acosé —b]

is Hurwitz. Using the Routh-Hurwitz criterion, it can be shown that A — HC is Hurwitz if
hy > —b, ho> —acosd-hb
(b) A state feedback integral controller is designed in Example 12 4, for a fixed 8, = 4, as
u= —k; (86 — 8) ~ k2(6)8 — k3(8)e, 6=6-8

where the gains ki, k2, and &3 are, in general, functions of 4. In a gain scheduled controller, § is replaced by
the scheduling variable #,. To ensure that the linearization of the closed-loop system at each operating point
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is the same as the feedback connection of the parameterized linear system and the corresponding controller,
we modify the gain scheduled contzoller to

u= -—k](g,.)(ﬂ— ;) ~ kﬂ(ar)e +z, Z=—ki(6,)(0 - 0,)

In this modification, we kept the first two terms since both # — 8, and @ vanish at the equilibrium point.
{c) The observer-based integral controlier designed in Exercise 12.4 and part (a) is given by

u= ~k1(0}6 — &) — ka(8)E2 — ka{b)o, o=0-4

& = [A(6) — H(8)C)z + Bu + H(8)y = [A(8) ~ BK(6) — H(5)C)2 — Bks(d)o + H(S)y

The controller takes the form of the original block diagram of Figure 12.4 with F = 4 — BK - HC,
G =[-Bky H,L=[0 -k, M =[-ks 0], M3 = —k;, and y,, = y. Applying the modification of
Figure 12.4, we obtain the gain scheduled controller

= [A(6,) - BK(8,) - H(#:)C)z — Bks(6)(6 — 8,) + H(6,)y
—ka(0,)20 — ka(8,)(0 - 6,)

= v

= n-k{8)6-6)

£ 3 2@

where y is obtained from y = § — 4, by using the filter (12.55)—(12.56).

*12.5 (a) Since e™" < e 2" <1, Y0 < 0 < 7, we have

o = [ " 672 exp[— A(a)]B(a) BT (a) exp[— AT (a)o] do

v

e [ expl-A(@)o1B(a) BT (o) expl-AT (@] do = & 2T W(a) 2 ey
[t]

o@ = [ " 6739 exp[— A(a)o]B(a) B (o) expl - AT (a)o] do

A

/ ’ exp[—A(a)o]B(a) BT (a) exp[-AT (a)e] do = W{a) < e
1]

(b)

=7 { P(a)[A(a) ~ B(a)K ()] + [A(e) — Ba)K ()" P(a)} =
z7[P(e)A(e) + AT (a)P(a) — P(a)B(a) BT (a)P(a)]z

2T P(a)[A(0)Q(a) + Q(a)AT (o) — B(a) BT (a))P(a)x

-
1l

A(a)Q(a) + Q(@)AT(a) = /of e~ A(a) exp[— A(a)o] B(a) BT (o) exp[- AT (a)o] dor
+ /0 " g-teo exp[- A(@)a]B(a)BT (a) exp[- AT (a)o]AT (a) do
- _ /0 ’ e-ﬂc":—; {exp[—A(a)o]B(a) BT (c) expl—AT (a)o]} do
Integrating the right-hand side by parts, we obtain
A(@)Q(a) + Q(a)AT(a) = —e™*" exp[—A(a)7]B(a) BT (a) exp[-A7 (a)7] + B(a)BT (a) - 2¢Q(a)
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Therefore

A@)Q(e) + Q(e)AT (o) - B(a)BT (a) < ~2cQ(a)

Hence .
V < -2c2" P(a)Q(a)P(a)z = —2czT P(a)z = —2¢V

(c) .
izl <V <klizlf, V<-2cV

where k) = €172 and k; = c3. From the comparison lemma,

V() < e‘z"‘V((})

IOl < =T < So VT <\ Remsiztoy,

e 12.6 Since P is block triangular, it is nonsingular if and only if [ gll I; ] is nonsingular. By inter-
changing rows, the latter matrix is nonsingular if and only if [ ‘g]l ;’, ] is nonsingular. It is argued on

page 484 that [ Ig: ﬁ. ] is nonsingular. Hence, P is nonsingular. Verifying that P satisfies (12.51) is

straightforward.

127 Letz; =¥ — ¢, 22 =9, and u = 4. Augment the state equation with the integrator o = z,. Define
z = [21, Z2, o]¥. The augmented state model is given by & = Az + Bu, where

0 1 0 1]
A=[O -1/T 0], =[’F/‘f:|
0

1 0 o0
where 1/7 = (1/7g){v/vg) and k/7 = (ko/10)(v/up)?- The state feedback control

_ T T 1 T
w=-12(5)-[o(5)- ()] -¢ ()
assigns the closed-loop eigenvalues at —7.5082, —0.7459 + 0.4927;. the closed-loop transfer function from v,

to ¢ is given by 6(2 1
8 +

83 4+0s2 4+ 1254+ 6
and has a step response with 20% overshoot and 6.4 sec. settling time. A gain scheduled controller can be

T @ PR @) @)@

Since the scheduling variable is not the reference input, we don't need the modification of Figure 12.4.

¢ 12.8 (a) The equilibrium equations are

_ k Loa#2 Loa#,
0=%y, O=g— —F,— 073 = —R5 ourtats
2 g ng 2m{a+ %, )’ 0 Re; + {a + )2

Set ) = Yps =T, Tz = Jos, U = Ulgs = Vg, and z4s = Z. Then,

omg(a + )2\ /2
Issz(_g‘%‘(m—)) y Vas = Ins
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(b)
af
bz

0 1 0
¢ —C2 —C3
r=x,, 0 C4 —C5

where the positive constants ¢; through cs are given by

C=_M825_ 62=£ c3=ﬂ C=ﬂ c:—R_
'T ma+r)? m' ma+r)2’ T LerHe+7)?2 T L(r)

The characteristic equation
8%+ (c2 + c5)s” + (cgc5 +c364 — €1)8 ~ €165 = 0

has a negative coefficient —cics. Hence, by the Routh-Hurwitz criterion, the matrix has eigenvalues in the
right-half plane. The equilibrium point is unstable.
(c¢) The linearized system is given by

I5 = Azxs + Bug
where Z; = T — Zas, Us = U — Uns, A is given in part (b), and B = [0, 0, 1/L(r)]T. It can be verified that
{A, B) is controllable. K is designed to assign the eigenvalues of (4 — BK) at —10, —10 = 10.The control

u is given by .
u = 62.9295(z) — r) +4.4432z;5 + 0.2502(z3 — Is) + Vis

where Vis = I = 6.2642.

(d) The step response of y and u for ¥(0) = 0 and y(0) = 0.07 (with other initial states equal to zero)
are shown in Figure 12.1. To account for the constraint 0 < u < 15, a limiter is included in the Simulink
simulation model. The response is considered feasible only if y belongs to the interval {0,0.1]. Using this
criterion, 0.07 is the largest acceptable initial position.

vi0)=0 w0y =0
0.08 8
0.05 7
0.04 6
5
= 0.03 2
4
o.02 3
o0 ] 2
[ 1
[+] 0.2 04 08 0.8 1 0 02 04 0.8 12 ] 1
t t
w0) = 0.07 y{0) = 0.07
0.1 "
0.06 1 10
0.08 [}
=0.07 2B
0.06 7
0.05 8
0.04 5
0 02 04 oe 0.8 1 0 02 0.4 0.8 0.8 t
t t

Figure 12.1: Exercise 12.8.

(e) Figure 12.2 shows the response for different values of m. These values are the extreme values for which
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y(0) =0, m=01 y(0) =0.07, m = 0.1

0.06 v _ 0.1
0.04} 0.08}
-2 2%
0.02 0.06}
0 . . : 0.04 . —
0 0.2 0.4 06 08 1 0 02 04 06 08 1
y{0) = 0, m = 0.046 y(0) = 0.07, m = 0.046
0.02 - - - 0.08 .
0.015} ' ] 0.06}
> 0.01} ] = 0.04
0.005} ] 0.02
0 0 =
0 0.2 0.4 06 08 1 0 02 04 06 08 1
yi0) =0, m=0.11 y(0) = 0.06, m=0.11
0.08 . . 0.12
006 0.1
> 0.04 o
0.08}
0.02
0 —— . 0.08
0 02 04 06 08 1 0 2 04 06 08 1
t t

Figure 12.2: Exercise 12.8.

a feasible response is obtained for the given initial position. There is a large steady-state error.
(f) The integrator & = x1 — r is augmented with the state equation. A matrix K = [k; k2 ks k4] is designed
to assign the eigenvalues of

0 1 0 0
196.2 -0.01 -3.1321 0
k; k; + 12.5284 ks — 40 ko
1 0 ] 0

at —8, —10+ 510, —12. The control is given by
= 109.8789z; + 6.805z2 + 0.00025zx3 + 153.25220

The step response is shown in Figure 12.3 for the nominal mass and in Figure 12.4 for different values of
m. It is clear that the control achieves zero steady-state error despite the perturbations in m. The transient
response is, in general, worse than the design without integral control. For example, in the case m = 0.1
and y(0) = 0, the integral controller has about 60% overshoot, compared with 10% overshoot in the case
without integral control.

The solutions of the following four parts do not repeat the simulations of parts (d) and (e}.
The simulations should show a trend similar to what we have seen before.
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yi0y=0 w0 =0

01 o1
0.08 0.08
0.08 0.08
2 2
0.04 0.04
0.02 0.2
0 0
0 02 04 D08 08 1 o 02 04 08 08 1
t 1
y(0) = 0.0 ¥0) = 0.09
0.12 14
0.1 12}
0.08 10
- a
0.06 8
0.04 e
0.02 4
0 0z 04 08 08 1 0 o0z o4 08 08 1

Figure 12.3; Exercise 12.8.

{g) Use the observer-based controller
= Ai+Bu+H(y—Cz), wu=629295(zx) —r)+ 4.4432%; + 0.2502(%3 — Jus) + Vis

20
where C=[100] and H = | 956.8 | assigns the eigenvalues of (4 —~ HC) at ~20, —20 & 520.
4857.7
(h) Use the observer-based controller

=A% +Bu+H(y—-C2), u=062.9295(x, - r) + 4.44328; + 0.2502(z3s ~ Iys) + Vi

100 2.2405 3.0131

where C = [ 00 1 ] and H = | 201.2620 60.2870 | assigns the eigenvalues of (A—HC) at —20, —20=%
3.0131 -0.2505 .

j20.

(i) Use the observer of part (g) and replace z; and 3 in the control law by their estimates Z, and 3.

(i) Use the observer of part (h) and replace z2 in the control law by its estimate £5.

(k) For state feedback, we solve the pole placement problem at r = 0.03, 0.05, and 0.07 to assign the

closed-loop eigenvalues at —8, —10 £ 710, —12. The resulting feedback gains are
Kes = [ —105.4498 —5.9167 00497 —128.7319 |
Kos [ —109.8780 —6.8050 —0.00025 -153.2522 ]
Ky = { -115.3518 -T7.6934 -0.0336 -177.7726 ]

We use linear interpolation to determine K for other values of r:

K., = Kpa+ (1" ;8203) (K05 - Kyp3), for0.03<r <005

r —0.05

K, = K°5+(_—"—0.02

) (Ko7 — Kos), for0.05<r <007
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y(0)=0,m=01 y{0) = 0.09, m = 0.1
0.1 : .

' ) 0.1 ' K J -
>0.05 >0.05 /\/‘

0 " " A 0 N
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
y(0}=0,m =0.025 y(0) = 0.08, m = 0.025
0.06 v 0.1 - v
0041 1
> >0.05¢
0.02} :
0 " A O A - A
0 0.5 1 1.5 2 o 0.5 1 15 2

y{0) =0, m = 0.115 y(0) = 0.08, m = 0.115
- 01 - = ¥

0.1 - .
: ) 0.08
>0.05¢ - > 0.068
0.0¢

0 0.5 1 15 2 0 0.5 1 15 2

Figure 12.4: Exercise 12.5.

Linear interpolation does not guarantee that K, will stabilize the system at the corresponding value of r.
Therefore, we calculate the closed-loop eigenvalues for r = 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065,
and 0.07. The eigenvalues, plotted in Figure 12.5, indeed lie in the neighborhood of the desired eigenvalues.
By the continuous dependence of the eigenvalues of a matrix on its parameters, we expect the same to be
true for other values of r. For the observer, we solve the pole placement problem at r = 0.03, .05, and 0.07
to assign the eigenvalues of (4 — HC) at —20, —20 = j20. The resulting observer gains are

' 2.1700 2.5357 22405  3.0131 23229 34876
Hoz = 248.8284 494564 |,  Hos = | 201.2620 60.2870 |, Hpr= [ 170.2966 70.7955
2.53571.7247 ' 3.0131 -0.2505 3.4876 -1.7122

‘We use linear interpolation to determine H for other values of r:

r—0.03
0.02

r — (.05
0.02

The observer eigenvalues are checked for » = 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, and 0.07. and

H. = Hp+ ( ) (Hos — Hys), for 0.03<r <005

H. = Hp + ( ) (Hor — Hoz), for 0.05 < r <0.07
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plotted in Figure 12.5.

Regulator Eigenvaluss Observer Eigenvalues
15 30 -
10 - 20
3 s 2
[ &
g 0 - g o
[+ ] [-]
E s E-t0
-10 - -20
=15
-14 -12 -10 -8 -8 -30 =20 -15 =10 -5 0
Real Axis Real Axis

Figure 12.5: Exercise 12.8. Closed-loop eigenvalues for different values of r.

(1) y = z3 = [0, 0, 1}z = Cz. It can be checked that {4, C) is observable. Thus, we can design a linear
output feedback control law to stabilize the ball at y = r. We cannot design an integral controller because
one of the conditions of integral control is that the controlled output (z; in this case) should be measured.

¢ 12.9 {a) The equilibrium equations are
0= —61% — Osrus + 83, = —047 + 05T Uy

Substituting #, from the first equation into the second one, we obtain

uZ, —atg +b=0, where a=:—3r, b=g‘—
2 265
829
2 3% 2
—= 4
T <4919204 => db<a

Hence, the quadratic equation has two real roots. To obtain the steady-state value of z; in the range
1 > 63/26,, we choose the real root for which ug < a/2; that is uss = (1/2) {6 ~ Va¥ — 4b]. Linearization
at the chosen equilibrinm point results in the matrix 4 = [ 9;:: _E";:“ ] It can be verified that A is
Hurwitz. Therefore, the equilibrium point is exponentially stable.

(b) The maximum value of r is \/(0§05 [461820,) = 298.14. We simulated the step response for increasing
values of r in the range 0 < r < 298 and with initial conditions z,(0) = 83/6, = 0.6667 and z,(0) = 0. The
motor always reached steady state at the desired speed, without z; violating the constraint z, > 63/26, =
0.3333.

(c) Changes in the rotor inertial change the constants §, and 85, which are inversely proportional to the
moment of inertia. It is clear, however, that multiplying 84 and ds by the same constant does not affect the
steady-state calculation. Simulation confirmed that the motor always reached steady state at the desired

speed for 0 < r < 298.
(d) Linearization at the desired equilibrium point results in the pair (A4, B) where A is given in part (a) and

B= [ ;o:zfy, ] The controlled output isy =2z, = C =10, 1).
541

A B —91 "-9211-'5 —-921‘
rank [ C 0 ] = rank 9511“ —94 85521
0 1 0
The determinant of this 3 x 3 matrix is given by

det(-) = 010521 — 8205uyer = O5(03 — 203 ugT)
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Substituting for tys, using its expression from part (a), we obtain det(-) = 8587/ a — 4b # 0. Therefore,
the rank condition (12.23) is satisfied. It can be also verified that (A, B) is controllable. Now Set 4 =

[ g g ], B= [ g } and proceed to design K such that A — BK is Hurwitz, using any pole placement

algorithm.
(e) It can be verified that (A4, C) is observable. Design H such that 4 — HC is Hurwitz and use an observer-

based controller.
e 12.10 (a)
ig = Ig
. : 1
o= 0= 35 [(
1
Azy)
i3 = I3

. - 1 —_m2r2 . 2 A2 .- -
i = § = _A(G)[ m2L2gsinfcosf + (I + mL?)(F + mLé sma-ky)]

m + M)mgLsin8 — mLcos8(F + mL#*sinf — ky)]

[(m + M)mgLsinz, — mLcosz)(u + mLzlsinz, — kzq)]

1
A(I]_)

(b) Set u =0 and &; = 0.

[-m?L3gsinz, coszy + (I + mL?)(u + mLzd sinz; ~ kz4)]

ES 52

(m + M)mgLsinz, — mLcosZ (mLzZsin®, — ki,)
= j"

= -m®L%gsin%, cosZ, + (I + mL?)(mLE3sinz, — kz,)

=T~ =
1

The equilibrium points are given by (Z;,0, Z3,0) where £, = 0, %, ..., and Z3 is arbitrary.

(¢) Take T, = 0. Linearization at z = Z and u = 0 resuits in the matrix

0 1 0 0
) 0 0. 3]
0 00 1
—C3 0 0 —C4
where the positive constants ¢, to ¢4 are given by
o = (m + M)mglL o = mLk o = m?llg k(I +ml?)
! A0) 'PT A CT A “T T AW

The characteristic equation is given by
s [53 + 482 — €15+ ca63 — clc,,] =0

From the Routh-Hurwitz criterion, we can see that the matrix has eigenvalues in the right-half plane. Hence,
the equilibrium point is unstable.

(d) The linearized system is given by

&5 = Axs + Bug
where z; = z — %, u; = u, A is given in part (¢) and B = {0, —mL/A(0}, 0, (I + mL?)/A(0)]T. It can be
verified that (A4, B) is controllable. Proceed to design K to stabilize the matrix (4 + BK) using any pole
placement algorithm.
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Chapter 13

«13.1 (1)
"y = m
y = 22
i = =—a[(1+23)sin(zy + §) ~ sin 8] — bxs
v® = —al +z3)cos(z; +8) - 72 — b{—a[(1 + z3)sin(z1 + 6) ~ 5ind] ~ bza}

— asin(z; + 6){—cz; + dfcos(z; + &) — cos 8] + u}

Let Do = {z € R* | 0 < #y +§ < w}. The system has relative degree 3 in Do. It is transformed into the
normal form via the change of variables

T(z) = :;
—a.[(l + z3)sin{z, + 5) —sin 5] 7]

which is invertible in Dp.
(2)
= T+ Y22
zz + v{—e[(1 + z3) sin{z1 + §) — sin 8] - bz}
—ya(l + x3) cos(z; +8) - & + (1 — by)ds — vasin(zy + 6) - I3
= —7azs(l+ z3) cos(z1 + &) + (1 — byH{—a[(1 + z3) sin(z1 + 8) — sind] — bz, }
— vyasin{zy + 8){—cz3 + d[cos(z; + 8) - cosd] + u}

The system has relative degree 2 in Dy. We have
R(z) = 21 + 722, Lsh(z) = 22 + y{—al(1 + 23} sin(z) + &) — sin 6] — bza}
#(x)
Find ¢(z) such that [0¢/8z]g = 0 and T(z) = h(z) is invertible in Dy. It can be verified that

Lyh(z)
¢(z) = z1 meets these conditions. With n = ¢(z), we have

n=ds1=z=E -0/

yt)=0 = &H(t)=0 = n=—(1/v}n

The system is minimum phase if v > 0.
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* 13.2 (a)
y=x3 = y=-T1+U

The system has relative degree 1 in R3. Therefore, it is input-output linearizable.

$1(z)
(b) h(z) = z3. Find ¢;(z) and ¢(x) such that (3¢, /0z]g = 0, [¢=2/0z]g = 0, and T(z) = [ q&;(:c) ] is
h(z)
invertible in R®. ¢; and ¢; must satisfy

O 9 _, 08 ot

+22=0

dzq 3_:53 ! e 3273

Take ¢7 = r; and ¢» = 2 — x3, to obtain

x 1 0 0
T(:g) =|xa—23 =10 1 =1 T
T3 0 0 1

T(z) is a global diffeomorphism. The normal form is given by

m=-hm+th, hm=m-Tm=-£—1h E=-m+u

. [-1 1
n= 1 _1 n

The origin is stable but not asymptotically stable. Therefore, the system is ot minimum phase.

The zerc dynamics are

*13.3

b= YY) ( % [(m + M)mgLsiné ~ mL cos(ﬂ)(u +mL6*sin@ — ky)]

The system has relative degree 2 in the domain {[#| < x/2}. Therefore, it is input-output linearizable. To
find the zero dynamics, take 6(t) = 0.

B(t)=0= () =0 = d(t)=0 = u(t)—ky(t) =0
Thus, the zero dynamics are given by # = 0. The origin is stable but not asymptotically stable. Therefore,
the system is not minimum phase.
s 13.4

Ty=tanzy +z3, Io=x1+u, Y=

y=T14+u
The system has relative degree 1 in R2. Therefore, it is input-output linearizable. To find the zero dynamics,

take y{t) = 0. The zero dynamics are given by &) = tanz;. The origin is unstable. Therefore, the system is
not minimum phase.

¢ 13.5 For ¢; = (;, 1 <¢ < m -1, the PDE (13.26) is clearly satisfied since ¢; is independent of ¢y, and &,.
For ¢m = Cm — &n/g(z), we have
0fm  O¢m

3. + 2, ——4qlz) =1 ~gq(z}/q(z) =
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e 13.6 Taking z; = w; for i = 1,2,3, the state equation is given by & = J'|u — a(z)], where J =
. [ {Ja — J3)T223 }
diag[Jy, J2, J2] and a{z) = = | (Js — J1)zzz1 |. The matrix J is nonsingular. This system is in the form
(J1 = J2)z120
(13.6) with A=0,B=1J ~1. The pair (4, B) is controllable. Therefore, the system is feedback linearizabie.

e 13.7
M(q)i+Clg,4)§+ Dg+g(g) =

Letz) =g ,z2=¢,and r = [ 2 ] Then
i = Az + By(x)[u — a(z)]

where 0 1 0
A= [ 0 0 ] , B= [ I ] , ¥{z) = M~Yz1), a(z) = C(z1,z2)z2 + Dz2 + 9(z1)
The inertia matrix M (2,) is nonsingular by assumption. The pair (A, B} is controllable. The system takes
the form (13.6) of the text; hence it is feedback linearizable.

e 13.8 Let A =[f, gl
oh. Ok [Bg of

Lah=5.2=5: 1527 ~ 829

&h 8h
L"(a 5’) —Ls (E )

LyL,h(z) = LyLyh(z)

_ Ohdy Ta=h Ohdf T&’h
T 8x8z azzf'ﬁﬁ g-f e
_ Ohdg _%g = L.h
T 9z 8z B:rax .

where we have used the property that the Hessian matnx % is symmetric.

e 13.9 Necessity follows from the fact that f; to f, are vector fields of A. To prove sufficiency, let g; and
g» be any two vector fields of A. Then, they can be expressed (locally) as

0@ =Y a@i@, 0@ =3 4@

=1 =1

1. 921 = [gcﬁfh gdsfs]
= 5 (E d;f:) Zczf: (Z Qf:) > dif;

j=1

r

- Z EDMVEWA-S I B SAWVES WA 2N

g=]

= { [Bf, % ] + ¢ (Lyd;) fi — dj (Ly;e:) f.}

1-—1_1 1

= Z Z {cid;(fi, £3] + e (Lyd;) £ = dj (Ly;63) fi})

i=] j=1
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Since {fi, fi] € A, we conclude that [g1, g2] € A.

e 13.10
0 - 0 0 1 1 000 —e*2 0
_Jo o ooff1| |0000 o [_|o
fufil=10 o o600 0000 o |[=|o
0 0 0 0 T3 0 01 ¢ 0 0
Since [f2, f1] = =[f1, f2], we conclude that A is involutive.
* 13.11 (a)
§=—3zit) + 22 = -325(z1 +22) + 3232 + 1 +u =32 + 2, +u

The system has relative degree 1 in R?. Hence, it is input-output linearizable.
(b) Find ¢(z) such that (3¢/8z)g = (8/6z2) = 0 and T(x) = [ _;g(i)zz ] is a diffeomorphism. With
¢(z) = x1, T(x) is a global diffeomorphism. The change of variables
n=z, (=-zi+1
transforms the gystem into the globally-defined normal form
T=n+7'+§ €=-3+4n+u

(c) The zero dynamics are 77 = 77 + 71°. Hence, the system is not minimum phase.

(d} o
T1+z
f(“)=[3x§112+2x] ] 9=[1]
0

o 1 1 1
“d’g‘"b? _[631z2+1 3:::“1’][1]_[3.1:%]

G=[g adfy]=[[1) 3i§], det(G) = =1#£0

Hence, the system is feedback linearizable.
(e) Find h(z) such that Lyh = 0 and LyLsk # 0. It can be verified that A{z) = z, satisfies these conditions
I

and results in the global diffeomorphism T(z) = [ 1+ Zo

. The transformed system is

=2, n=n+3z(zn-2n)+zn+u

U=—-21-23 -~ 32?(22 - 21) yields
=23, ZH=v

e 13.12 (a)

¥y = I1+x2

y = f1+i=-n1+nT+ 12+ 23

§ = (l+z)ii+{m +1)E2+ &3 = (-1 + o) (-1 + 122) + (22 + 1) (22 + 23) + 6{z) + u
The system has relative degree 2 in R3. Hence, it is input-output linearizable.

¢(z)
(b) Find ¢(z) such that (8¢/0zx)g = (8¢/0z;3) = 0 and T'(z) = z1 + T3 is a diffeomor-
: —I) +xz122 + 22+ 13

phism. With ¢(z) = z;, T(x) is a global diffeomorphism. The change of variables

1=, L =%1+3, LHL=-In1+nTz+z+ 73
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transforms the system into the globally-defined normal form
h=-n+nE—-n), &L =& &H=(-1+z)(-5+n12)+ (21 +1) (T2 +33) +6(z) +u

(c)
y() =0 = () =0and () =0 = f=—n-7°

The origin of the zero dynamics is asymptotically stable. Hence, the system is minimum phase.

d
() [ -l+z = 0 } 0 0
edgg=[fg=-| o 1 1 [°]=[ ! ]
x « (08/0z3) 1 —(86/0z3)

0 0 0 0 0
lg,adsgl=1 0 0 0 [0 = 0 = —(8%6/8z2)g
* = —(0%616z3) 1 ~(826/8z3)

Hence, the distribution {g,adsg} is involutive.

0 0 017 h =142 = 0 0 Ty
adf«g:[f,adfg]= 0 0 0 [.fz - l 0 1 1 ] [ -1 ] = [ * :|
* o % | 5 * * % —(88/0z3) *

] 0 0 I
G=}10 -1 * |, det(g) =I
| 1 = *

Hence, the system is feedback linearizable in the domain {z, > 0} or the domain {z; < 0}.
(e) Find h(z) such that
Loh=0, LgLsh=0, L L3h#0

Oh

Lgh = -aTs =0 = h= h(21,12)

Bh h
Leh= b—x—l-(—m; + Z122) + 6_:1:2(z2 + z3)
_ OLsh) _ Bk _

LyLsh = 52s =0 = Bz, 0

)
Take h(z) = z:. It can be verified that T(z) = ~31 + 2127 is 2 diffeomorphism in the

(=14 z2)%z1 + z1{T2 + =3}
domain {z; > 0} or the domain {z; < 0}. The transformed system is

33 =2y, 22=23, &=2zfu—a(z)]
Take u = a(z) + v/T1.

e 13.13 Restrict u to the domain [u] < 7/2 and z to the domain D = {{z3| < #/2, |z3] < 7/2}. Then,
cos{z;) # 0, cos(z3) # 0, and tan(x) is invertible. Apply the input transformation w = tan(u}/(bcos(xq) cos(za)),
to obtain

&= f(z)+gw
where
tan(rs) 0
f= [ ~ tan(z2}/(a cos(z3)) ] , 9= [ 1 ]
tan(zz2)/(a cos(z3}) 0

195



8 0 0
ad;g=[f,gl=-5§g=[ ooz ] [g,adf91=9%°—i-~—f”)g=l 3221‘2/31:32]
—0J2/0Z2 — & f2/3$2

Since 8f2/0z; = —sec? (x2)/(acos(z3)) # 0 in D, we have

8 12/013
dsg] = 2
l9:0dsgl = 5 e, 9919

Therefore, the distribution {g,adyg} is involutive.

Blads) ,_ 0f

(811/823)(8f2/0z2)
a fg=[f,adf9]= dz Ea’dfg= *

0 0 (841/023)(8f2/0z2)
C =9, adrg, adjg]l=| 1 (8f2/B,) *
0 —(8f2/0z2) .

det(G) = —(81/823)(8f2/0z2)?

Since 8f, /823 = —sec?(z3) # 0in D, det(G) # 0 in D. Thus, the system is feedback linearizable. To find
the domain.of validity of the linear model, we need to find A{z) such that

h{0) =0, %g‘—-ﬂ, %9=0, —a%g;éo
%g:ﬂ = %:0
We must take k independent of 2. With (8h/8z,) = 0, we have
Lih = g-‘l-tm(za) + %%%
L, g o AL, O (el 0

So, we choose h independent of 3. Therefore,

8h #h Oh (secx3)?tan(zxz)
Lih=—t d L:h=— 2, U 3 2
%7 8z, an(zs) and Lyh dx? (tanzs)” + dzr;  acos{zz)

8(L7h) _ Bh (secxs)®(seczs)?
8z = 8, acos(z3)

#0
‘We must require
Sh
Bz, 7 °

Take h = z;, which yields
Lih =tanzs, L3h=(1/a)(seczs)®tanz,

The domain of validity of the linear model is x € D and u € { |u| < n/2}.
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* 13.14 (a) .
—I; +Ta— T3

f=] -—mms—~z2 |, g=|1

t* 3 | 1

0 0
adsg = [f, 9] =*"g—£9= [ 1"(')31 }, {9, adsg] = Q(%éfgly= { U}
0

Therefore, the distribution {g,adrg)} is involutive.

-1+ 11)
Bladsg) . Bf (
adtg = [f,adsg] = e f- 3z adsg = 1+28—n:3
0 0 —(1+z)
G =g, adsg, adig)= | 1 1+ 1+7Z2-25 |, det(§) =1 +m)?
1 ¢ 0
Thus, the system is feedback linearizable in the set {1+ z; # 0}.
(b) Find h that satisfies
8k B(Lsh) - OLFh)
h(o)—01 3.1:9—0’ B Q-Dv TQ#O
8h 6h Bk
-a—z_g =0 => 5}: -+ —C‘E =0
Try h = z;. Then, Lyh = —z1 + 22 — 15,
B(Lsh)
_ a9 0
LEih = —(—21 4+ 22 — 23) + (—2133 — %3} + 21 =271 — 272 + T3 — 1123
(L%h)
Bi g==-241~-z;=—-(1+z)

Restrict z to the domain {1+ z; > 0}. Thus, the transformation T(z) is given by
It
T(x) = ~Z) + T3 — T3
2ry — 220 + T3 — T1 13
A linearizing state feedback control is given by
u = az) + Bz)v
where 8 = —1/(1 + 1) and a can be calculated using (13.36) of the text.
e 13.15
023 + cz} + c2
z= T(I) = 29:1:2(k - b:rg)
20(k — 2bzo)}(—bxy + k — 03133)
Clearly T{z) is differentiable. Find T~!(z). Start with the equation
23 = 20.’52(’: - b:l?z)
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For 2 < k/2b, this equation has a unique solution z2 = ¢(z;). Consider next the equation
7 =9m§+cx§ + ¢y

which yields

T3 = J%— [‘21 - 9‘352(22) - CZ] d=ef w(zlszﬂ) > 01 in T(DU)

The last equation is
23 = 29(’: - 2b$2)(—b$2 +k- C$1$3)

Since (k — 2bz;)} > 0 and z3 > 0 in Dy, this equation uniquely determines z; as a function of z;, z; and
z3. Thus the map T—1(z) is well defined on T'(Dy). It can be easily checked that T—1(z} is differentiable in

T (Dy).
e 13.16

. . . 1
Iy =22, F3=-=10 [sm (zl +g) —E] + 10w

The state feedback control of Exercise 12.1 is

u=-2511 -2, = T=%-2.5(O—w/4)—9

The closed-loop eigenvalues of the linaerized model are —5+42.65915. Using feedback linearization, we obtain
the control law
u=sin(z; +8) —sind — ky2y —kpzy = T =sind — k(0 — x/4) — k8
To assign the closed-loop eigenvalues at —5 + 2.65915. we choose k; = 3.20711 and k; = 1. Thus,
T =¢ind — 3.20711{0 — /4) — 6

Simulation of the two controllers, for different initial conditions, are shown in Figure 13.1. For the case of
zero initial conditions, the responses are almost identical. For the initial condition 8 = 57 /4 and 8 =0,
there is a difference where @ reaches steady state faster under feedback linearization, at the expense of more
control effort and a larger transient of §. The difference between the two controllers is not dramatic. We
would have seen a more dramatic difference had the feedback gains been smaller, for then the control based
on linearization would have produced a closed-loop system with multiple equilibria.

-1 + x2 0
f=1l ma—22—mz3 |, g=1|1
) + T1%2 — 233 o

| -1 0
adsg = [f,9] = [ 1 ] v lg.adsg] = [ 0]

- 0

° 13.17

Hence, the distribution {g,adsg} is involutive.

~2
adsg = [f,adsg) = | 2-23 -2}
1—2.3;
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Figure 13.1; Exercise 13.16: Response under linearization (solid) and under feedback linearization (dashed).

0 -1 -2 ‘
G=11 1 * , det(@)=1
0 —I] 1- 2$1

Hence, the system is feedback linearizable. Find h(z) that satisfies
Oh o Bk _, (Lih)

MO=0 Fo=0 9=t 5 97F0
% =0 = %:0 = h=h(r,z3)
Lih = g—z = %(xg -+ %;—(z; + 2122 — 223)
-Q%f:h;)g=0 = %+31%=0

Try h=z‘;’~—233.

th = 2x; (.'172 - 21) - 2(271 + 120 — 233) = —2(3% +x - 21‘3)

A Lsh
Ltk = (5i )f = =2(2z1 + 1){z2 — 21) + 4(z1 + 2122 — 223) = 477 + 621 — 2z — 823
8(L2h)
dr 7 —2#0

It can be verified that

:L'? - 2x3
T(z) = —2(z? + o1 - 2x3)
4:1:% + 6z — 202 — 823
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is a global diffeomorphism. In particular, T7! is given by

‘ -2 (1/2)22
T-'Y2) = ~z1 — (3/2)22 — (1/2)z3
(1/2)2f = (1/2)21 + (1/2)2122 + (1/8) 23

The transformed system is given by
2= A.z— 2B.[u— a{z)]
Design K such that A; — B K is Hurwitz and take u = a(z) + (1/2)K 2.

e 13.18 (a) The system is already in the form (13.1), with

0

011 i
A=[0 0], B=[1], ¥(z) = ~bcoszy, a(z)-—w

~ beosz

Therefore, it is feedback linearizable provided cosz, # 0, which is the case in the domain D = {|z,| < 7/2}.
(b) Take

-

- —asinr
bcos:r;( 1+v)

to obtain
i’:l = Tq, i‘z =v

To stabilize the system at z; = 0, take
V= --k1(.1:1 —9) —kaxs, ki > 0, k>0

The closed-loop system

Iy =23, 3= —ki(z) ~8)~ ka2
has an asymptotically stable equilibrium point at £ = (@, 0). The domain of validity of this control is limited
to |z1| < /2. Therefore, we cannot make the equilibrium point globally asymptotically stable.

¢ 13.19 The map 7'(z) is given in Example 13.14. Using (13.36), we can calculate a(z) and «¥(z). These
three functions depend on the parameters a, b, ¢, and d. Define T(z), G(z), and 4(z) by replacing the
parameters Wifh their estimates, and set §(z) = 1/%(z). The state feedback control is given by u =
a(z) — B(z) KT(z). The closed-loop system can be represented by z = (A, — B.K)z + B.3(z), where &(z) is
defined in Section 13.4.1.

» 13.20 (a) .
= fo(m&) E=AL+ Bcﬁ_l (x)[u - a(z)]

Take u = a{z) + f(z)v, to obtain

1.7=f0(171€1): fll = §2r e ép—l =£p: ép =v
Apply the change of variables z; = e(~1¢; and w = ePv.
£ = Ef.l = 552 = Zg
Eiy = EMa=e3=m
EZp-1 = Ephlflp-l =", = Zp
€3, = P, =cPv=w
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Thus,
f= fo(nrzl): gz = Az + Bow
(b) With w = —Kz, we have
n= fﬂ(”:zl)a gz = (Ac “'BCK)Z

Let V(n,2) = Vo(n) + VzTPz.

. a )
Vv = %ft)(ﬂa 21) + W—iﬁ—sz[P(Ac - B.K}+(A: - BcK)TP]z
Vv VL
= —670)‘0(”,0‘)+En[f0(n)zl)—f0(n?0)] - % :TPZZTZ

Let ¢ be any positive constant and define the compact set { by 2 = {V(n,2) < c}. On the compact set 1,
we have

%[fo(ﬂ, 21) - fO{’?! 0)] S kl{ll

where k depends on ¢. Hence,

-W(n

V < —W(n)+ Kl - 2E‘\;\/m_,(ﬁuznz <-W(n) - (ée_'il__m - kl) Nzl

Choosing ¢ small enough, we obtain
V < -W(n) — kallzlla, k2 >0

which shows that, for sufficiently small ¢, the origin is asymptotically stable and the set ! is contained in
the region of attractioxn.

(c) Without loss of generality, take ¢ < 1. For any compact set in R", we have linollz € €1 and ||&llz £ e-
Then, [i(0Ml2 < lléllz < ¢2- Choose ¢ > 0 such that {[lnll2 < e1 and |lz]lz < e2} € {V(n,2) < c}. Then,
initial states (1o, £o) in any compact set in RB™ are included in the region of attraction. which shows that the
feedback control achieves semiglobal stabilization.

(d) Notice that for any bounded £(0), the initial state z(0) is bounded uniformly in £. Therefore, the
solution (n(t), z(t)) is bounded uniformly in £. However, peaking is present in {2 to §,, as seen from the
scaling transformation. There is no peaking £ since & = z1. The function fo depends only on 7, which
explains the special nature of the current system.

» 13.21 (a)
Yy=T1— I3 > y=H -ITp=Iz = §=i‘-2=$1$2—$§+u
Therefore, the system has relative degree 2 in R3. We have h(z) = z; — 2, and Lyh(z) = 2,. Find ¢(z) such
#(z)
that {0¢/0z)g =0 and T'(z) = h(z) is invertible. It can be verified that ¢(z) = z; — z3 satisfies the
Lyh(z)
the PDE and makes T(z) a global diffeomorphism. The normal form is given by

A=’ —&, b=k, b=&t&L+u, y=§&

This is a special normal form because the 7-equation depends only on &;.

(b) The zero dynamics are given by 7 = —n3. The origin of this system is globally asymptotically stable.
(c) Taking Vo(n) = 37°, we have

o%
™

M

(-7°) = -n", a—n(—&) = —nk < k6|
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on the set {|n] < k1}. Therefore, all the assumptions of Exercise 13.20 are satisfied, and we can design
a semiglobally stabilizing state feedback control following the procedure outlined there. In particular, Let
K =[1 1}; then, A; ~ B, K is Hurwitz. A semiglobally stabilizing state feedback control can be taken as

1
u=-hit 5_2{‘31 —2)=—bbz— 51251 - "z'fz

with sufficiently small ¢.
¢ 13.22

1= folm€), &= (A4-BK){+ Bé(z)
By Theorem 4.16, there is a Lyapunov function Vy(3) that satisfies

V
Gy Jo(m0) < —as(linl)
in some neighborhood of 7 = 0, where a3 is 2 class K function. Let P = PT > 0 be the solution of the
Lyapunov equation P(A — BK) + (A - BK)TP = —I. Take
V(n,&) =Ve(n) + AVETPE, A>0

as a Lyapunov function candidate for the full system.

e 1m0+ %’E[f(n,a)-fofn,om A (—£Te 4267 PBS] < —on{Inll) + K iell— Mall€lla + Mesc

V==

& 2/€T PE
where k; to ks are positive constants. In arriving at the foregoing inequality we have used the fact that fp
is locally Lipschitz and [8Vy/8n] is bounded in some neighborhood of 7 = 0. Choosing A = 2k; /ks yields

V < —es(linl) - kullélls + (2kaks /k2)e

The conclusion follows from Theorem 8.18.
+ 13.23

n=fo(m), €= (A-BK){+ Bé:)
Without loss of generality, assume that ||8]] < k||z|} is satisfied in the 2-norm. By Theorem 4.14, there is a
Lyapunov function Vp(n) that satisfies
AL

B

Let P = PT > 0 be the solution of the Lyapunov equation P(4 — BK) + (A — BK)}TP = —]. Take
Vin,€) =Vo(m) + MTPE, A>0

as a Lyapunov function candidate for the full system.

= %fofm 0) + %mn,a ~ folmO)] — AT€ + 22T PB4

< —oslinllz + caLllmiiall€hz — MIENS + 22KILPBlizlinll2ll€llz + 22k} P Bllall€l13

where L is a global Lipschitz constant for fo with respect to . Let k* = min{1/(4]|PB||z), (csL)/(2A||PB||2)}.
Then, for all k < k*, we have

v T 5] k]
def

Taking A = A* = 4{csL)?/cs ensures that the 2 x 2 matrix is positive definite. Consequently, the origin is
globally exponentially stable for all ¥ < min{1/{(4||PB|l2), {csL)/(2)*||PBlj2)}-

<calllz, Y7

8V
cullll < Vot < callll, - G2 0) < —calnlp, |

V
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* 13.24

_ 0= foln,£), €= (A~ BK)¢+ Bé(z)
Without loss of generality, assume that ||0]| < k{{é]} + W (n) is satisfied in the 2-norm. The derivative of
V(n, &) = Vo(n) + \/ETPE is given by

o fo1.0) + Z211(1,€) = ol 00 + ﬁ{—s% + 267 P B
=Wi{m + kll€llz — Akz[I€llz + Aks|id]l2

W) + kgl — Aka|l€l2 + Akak[i€llz + Ak kW (1)

—(1 = Aks k)W (n) — (Ak2 — k1 — Ak3k))|E]l

14

[ I VAN Pa

where k; to ks are positive constants. In arriving at the foregoing inequality we have used the fact that
fo is locally Lipschitz and [0V, /8n] is bounded in some neighborhood of 7 = 0. Take A = 2k, /k; and
k™ = min{1, k; }/(2Xks). Then, for all k < k*, we have

. 1 1
V< —EW(ﬂ) - 5»’“1“5“2

which shows that the origin is asymptotically stable.

* 13.25
y=121 = =120 +22 > j=x3+u+ 25 (s +73)

Therefore, the system has relative degree 2 in R®. Let us check the minimum-phase property.
Yy =0 = 3= -z
Hence, the system is minimum phase. let e =y —r.
E=f-F=xg+u+2n(z+2i) -7
Take

u = —z3-2z1(T2 +22)+F — kje — kzé
= —z3 - 211(T2 + 23) + F = k1 (T1 = 7) = ka(z2 + 222 — 7)

where k; and k- are positive constants. The tracking error e satisfies the equation € + k2é + kye = 0, which
shows that e(t) = 0 as t = co.

* 13.26
Y= = y=Ty+zy8nz > § =23+ u+ (sinz; + z; cosz {22 + 21 sinzy)
Therefore, the system has relative degree 2in R*. Lete =y —r.

é=f—F=xzs+u+ (sinz; + zycosx,)(xa + z18inxy) — 7
Take
u= -T2 — (Sinz1 + Z1cos 1 T2 + a8inzy ) + F — ke — ko

where k; and k» are positive constants. The tracking error e satisfies the equation € + ko€ + k1 e = 0, which
shows that e(t) = 0 as t = o0.
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* 13.27 (a) Denote the gravitational constant by go and write the state equation as & = f(z) + g(z)u.

9. 85 0 0 ¢l A 0 1 0 0
[f, g] = af - a_-'-:g = 0 0 0 fz - * * (af2/313) 0
(Bg3/8z;) 0 0 fs * x (8f3/0z3) 93

adfg

0
= [ —(0f2/0z3)g3 ]
(Ogz/0x1) f1 — (8f3/0x3)gs

!

0 0 0 0 0 0 0 0
[9,adsg] = g-(f;i-’—wg—%(adfg) = [ + 0 -(szz/azi)ga} [ 0 ] - [ 0 0 0} [ ¢}
0 = 00

* * g3 *

0
8f3 /02
= [—(afééazi)yé‘J = (OF 1A |28 = o (O Joa) s Ofafomalen]

The foregoing representation of adyg is valid in the domain D = {a+ z; > 0 and 23 > 0} since in this

domain
0f _ _ _Loozs
Bz m{a +31)?
is well defined and different. than zero. Hence, the distribution {g,ad;g} is involutive.

adg = [fadpel = 2295 U (oq)

9]
0 0 01 A 601 0 0 —(8f2/0z3)g3
« 0 [;‘ }'2 = * o+ o« —(3}'2/3-‘-33)93} = [ * ]
* x A *x & * *

0 0 ) —(afz/azs)m
G=[g adsg adigl=| 0 —(8f2/023)gs .
g3 * *
8f, )2 'Lzazzz '
det(G) = —gs [ === =— 03
et(G) 93(33393 Flam?(a + 27)f #0 forxeD
Thus, the system is feedback linearizable in D.
(b) Find h(z) such that
8h HLsh B(L3h)
mo)=0, rg=o, Mg 2N,
Try h = h(z:).
Bh ah
h = h — —_— =
(.’tl) = Bza 0 = azg 1]
_Oh _ Oh a(Lsh)
th—azf—azlxz = oz 9=0
NLgh) . &*h Oh k aLlyz?
L3k = 4 =——g2 4 — ( O i, it S
! oz / 83:%22 8z, go— T2 2mi{a + ml)z)
BIIK) _ oh _aLozs
dx3 ozr; ma+ 1,)2
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Then, [3(L}h)/8z}g # 0 for all z € D. Take h = z, to obtain

I
T(.’J:) = Tz
k aLgz3
90 = w2~ Fmlatar?
It can be verified that T'(z) is a diffeomorphism in D. The change of variables z = T(x) transforms the
system into

5 = =
22 = 23
5 = k ye alozs Loazazs aLozizs
3 m”° T mL(z)(a+x1)? T et a2 m(a +z,)3
k O.Loﬂ:s L1x233
= - —z3- s [-Rzs - =—= +u
m mL(z1)(a+ z;) a+ 1
Take L I 2
w = Rs + 12223~ mL(z1)(a + 1) v
a+z aLloxs
to obtain

Iy =2zp, Z3=23 =— —23+V
m
To stabilize the ball at y = r, take

v = —kl (21 - T) - kzZz - k323

The overall control is

Lyizyzy + mL(z)(a + 2,)?

ot 2Lozs (k1 (21 = 7) + k223 + k3z3)

u=Rzs+

The feedback gains are chosen as k; = 2000, k; = 400, and k3 = 30 to assign the eigenvalues of

0 i 0 0 1 0
0 0 1 > 0 0 1
—k =k —(ks+k/m) -k —k; —ks

at —10, —10 £+ 710. The step response of y and u for y(0) = 0 and y(0) = 0.089 (with other initial states
equal to zero) are shown in Figure 13.2, To account for the constraint 0 < « < 13, a limiter is included in
the Simulink simulation model. The response is considered feasible only if y belongs to the interval [0,0.1).
Using this criterion, 0.089 is the largest acceptable initial position. Comparing these results with those of
Exercise 12.8, we see that the response has less overshoot in the current design. Consequently, the maximum
deviation of y{0) is 0.089 compared with 0.07 in Exercise 12.8. Figure 13.3 shows the response for different
values of m. These values are the extreme values for which a feasible response is obtained for the given
initial position. There is a large steady-state error. The smallest mass we could work with was m = 0.067,
compared with m == 0.046 in Exercise 12.8. This could be an indication that feedback linearization is more
sensitive to parameter perturbations. The large steady-state error can be handled by the use of integral
control .

{c) From part (b), we know that the system is feedback linearizabie with h(z) = z;. This shows that,
with y = , as the output, the system is input-output linearizable. Proceed to design the tracking control

following the steps of Section 13.4.2.
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Figure 13.2: Exercise 13.27.

. 13.28 (a)
Y=y => =04z +81m1

Let D = {z € R? | z; > 62/26,}. The system has relative degree 1 in D. Therefore, it is input-output
linearizable. _

(b)
y(t) =0 = zz(t) =0 = ) =-8x; +6;

The zero dynamics equation has a globally exponentially stable equilibrium point at z; = 63/8,. Therefore,
the system is minimum phase.

(c) Lete=y-~-r.
é = —Pgrs + Osziu— T

The conttol 1
u= 5;;';[94:52 +1"—ke], k>0

results in ¢ = —ke. Hence, e(t) = 0 as t — co.

{d)

(1) Figure 13.4 shows the response for 7 = 0.1 and k = 1. The settling time is about 0.5.

(2) To decrease the settling time, 7 was reduced to 7 = 0.02. The response didn’t improve because reducing
7 increases # while the control is limited to £0.05. This situation can be improved by increasing the feedback
gain k. Figure 13.5 shows the response for 7 = 0.02 and k = 10. The settling time is about 0.1. Notice,
however, that the control saturates as a result of the increase in 7.

(3) The response with a 50% decrease and 50% increase in J is shown in Figure 13.6. The settling time

deteriorates.
(4) Increasing k to k = 10 improves the response a lot, as shown in Figure 13.6.
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Figure 13.4: Exercise 13.28.
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Figure 13.6: Exercise 13.28.
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Chapter 14

e 14.1 (a) Let s = a1, + T2, where @; > 0. On the sliding surface s = 0, we have £; = —a12; + sinz;.
Choosing a; > 1 ensures that the origin x; = 0 is asymptotically stable.

§=ayi + &2 = a1{zg +sinz ) + Glzf +(1+6)u
Taking u = —a; (z2 +sinz;) + v yields
§ = 6y77 — Oaa1(z2 +sinz; ) + (1 + 62)v -
33 = 01533 — B2018(22 +sinzy) + (1 4 O2)sv < 222|s| + (a1 /2)|22 + sin 2y ||s] + (1 + 6;)sv
Take v = —ﬂ(:r)sat(s/s), £ > 0. For |s| > &, we have
5§ < 223[s] +-(a1/2)|z2 + sinzy|ls| — (1/2)B(z))4|

Take 8(z) = 422 4 a1|z2 + sinz, | + B, Bo > 0. Then 85 < —fFp|s|/2, which shows that the trajectories reach
the boundary layer {|s| < £} in finite time. Inside the boundary layer we have

i = —a12; +85inzy + 8
Let V; = 1a3.
Viz—ai? +oysing + 38 < ~(0y ~ 1)zl + o

Take 2] = 2.
~(1/2)z}, Vm| =2

2z, |s| <€ g} in finite time. Inside {1, the system is

Vi < -2} +mle <
<

Thus, the trajectories reach the set Q, = {|z,|
represented by

£ = —21; +sinz; +5, §=4862z°—20,(s -2z, +sinz;) — (1 +8)(s/¢)
Let V2 = (=} + 5?%).
V, = —fo + 318Nz + 118 +811§s —202(s = 2xy +8inz )8 — (1 + 92)32/5

~z3 +4(1 4 e)|zy||8] — (% - 1) s

Tl 1" 1 —21+¢) | [ |2l
|s] -2(1+¢) (1/2e)-1 I
The 2 x 2 matrix is positive definite for sufficiently small €. Hence, all trajectories in §), approach the origin

at ¢t tends to infinity.
(b) Letey=xz) —r and e; = é; = &, — F = x93 + sinz; — F.

1A

é1=ey, éx=6izZ+ (1+6)u+ (22 +sinz;)cosz; —F
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Let the sliding manifold be e2 = —a,€1, a; > 0, and set 8 = €3 + aje;.

§= 012} 4+ (1 + O2)u+ (22 + sinz;) coszy — 7 + arey

Take
u=—(ry+sinz;)cosz; +7 ~ areg +v
s$=v+9, where §=206x}+8(—(z2+sinzi)coszy + 7 — ar€2] + bov
1 ] 1 1
8] < 22% + 2 [{z2 + sinzy) cosz; + arez| + 3 |7l + E,UI

Take .

: 1.

Blz) =2 [2.1:% + 3 [(z2 + sinz;) cosxy + ajez| + 3 |r|] + 53, Bo>0

and s

= —-f{x) sat (E)
For |s| > ¢,

88 S -—B0|3[

which implies that the trajectories reach the boundary layer {|s| < £} in finite time. Inside the boundary

layer,
€ =—a1€1+ 8 = €1€; < —ale"f + E]C1|

Take ay = 2.
e1é1 < —ef, Vle>e¢

Thus, le:(t)] < ¢ after a finite time.

e 14.2 (a)
I =12, ZIp=-—axa|m]+u, y=z

(b)

Y=y, §=-—azs|zsj+u

The system has relative degree 2 in RZ. Hence, it is input-output linearizable. In fact, the system is globally
input-output linearizable since the control « = axs|zz| + v results in a chain of two integrators form v to y.
(c) Let e; = 1) — 4 and €3 = 23 — 4.

é1 =€z, €= —aTa|za|+u—yYy,
Taking
u=azg|za] + Y — e — ey

results in the linear error equation
é1 =€z, é2=—€1—¢€

. 1 . .
whose matrix A = _01 _1 ] is Hurwitz. Hence, the control achieves global tracking.

(d) When & # a, the error equation is
é1 = eq, 6'2 = —£) — €3 — (a - &).’L’glIz,
The perturbation term satisfies

(a — d)z2|72| < 0.0122 = 0.01(ez + 2 cos 2¢)* < 0.01(e2 + 4lez| + 4)
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To show ultimate boundedness, we need to bound the perturbation term by a linear growth bound. Restrict
ez to |ea| < k2. Then,
(a — d)zz|zz] < 0.01(ky + 4)jez| + 0.04

The solution of the Lyapunov equation PA+ ATP = -Iis P= [ ég Ois ] Use V = eT Pe as a Lyapunov

function.
Vo= —llell} - (e1 +2e2)(a - d)zalzal < —llell} + VElell2[0.01(ks + 4)lellz + 0.04]
= ~[1-0.01V5(4 + k)]llell3 + 0.04v/5lel]»
Take k; = 4.
V = -0.821el3 +0.089flell; = —0.001]je]2 — 0.82]l¢]|Z + 0.089]|ef]
< 000Ukl ¥ lell 2 Fo  u

It follows from Theorem 4.18 that the ultimate bound is given by

_ . [Amax(P) _ /1809 _

This ultimate bound is not valid globally because we restricted the analysis to the set {|e;| < 4}.
(e) Use sliding mode control with s = ey + es.

§ = ez — axglag| +u— V), = €2 — T2)za] - (@ — &)z2 |22} + v — Uy
Take u = —ez + z2|z2] + 1;’:'1- +v.
58 = —(a ~ a)zz|z2|s + sv < 0.01z%|s| + sv

Take v = —(0.01z% + 0.1) sat{s/c). After some finite time, |s] <e. From the equation é; = —e; + 3, we see
that after some finite time [e;] < £/8, where 0 < # < 1. Choose ¢ < 0.01 to ensure that the ultimate bound
on |e;] is 0.01.

e }14.3
&1 =22, &2= —wrz +ew(l — plsi)zou

(a) For u = 1, this is the standard van der Pol oscillator which is known to have a stable limit cycle. The
fact that the limit cycle is outside a circle of radius 1/ in the plane (z,, z2/w) can be shown by transforming
the equation into polar coordinates. Let

p° =z + 3l ju?

. £
pp==(1 - p*z})ad

On the circle p = 1/p, we have {z;] < 1/u, which implies that (1 — g?2?) > 0. Hence, all trajectories on
this circle must be moving to the outside. Therefore, the stable limit cycle must be cutside the circle. For
u = —~1, we can show the existence of the unstable limit cycle by reversing time and scaling the state variable
to arrive again at the standard van der Pol oscillator.

{b) We have
2 g 2

T . 2
s=xy+ =2 -1, s=:(l—pzzf)z§u
Now

s)=0 = 3(t)=0 = u(t)=0
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Therefore, the state equation reduces to a harmonic oscillator

2

I = Iz, I3=~-w'n

(<) %
83 = —(1 — p®zd)xius
w
For s # 0, take u = —sgn(s).
. 2e
sé=— —(1- p’z})zjls|

Inside the band |z;| < 1/p, the term (1 — u?z?) is positive. Therefore, 55 < 0. In fact, 55 < 0 except on the
line 3 = 0. Since no trajectory {other than z(t) = 0) can stay identically in the set z; = 0, we conclude
that s(t) must reach zero; that is, the trajectory must reach the sliding manifold.

(d) Simulation results for u = — sat(s/0.01) are shown in Figure 14.1.

0.6 r v 1
0.4}
0.5}
0.2
x 0O o« 0
-0.2
-0.5
-0.4
; -1
0 10 20 30 -1 -0.8 0 0.5 1
t X

Figure 14.1: Exercise 14.3.

o144 Let V] = ,i—,zf be a Lyapunov function candidate for #; = x5 + ar; sinz;.
Vi = 2125 + 6z sinz; < zy24 + 223
The origin ; = 0 can be globally stabilized with z» = —3x; since V; < ~z2. Take s = 3z; + z».

§ =3 +23 = 3(z2 + ez sing) ) + bz +u

Take

u=~-3(z2 + Tsinz;) — Tz + v

§==3(a-1}zysinzy + (b— 1)zyz2 + v
i—3(a - 1), sinz; + (b - 1)3112' < '21|(3 + 2'.’!22')

Taking

v=—[1+|z:1{(3 + 2|x2])] sat (f)

E

ensures that s(2) reaches the boundary layer {|s| < £} in finite time. Since the origin of £; = —32;+az; sinz,

is exponentially stable, it follows from Theorem 14.2 that the origin # = 0 is globally asymptotically stable.
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e145 Letzy =0, 22 =6, u=T,a=g/l,b=k/m, c=1/mé, and C(t) = h(t}/, to obtain
iy =29, &3 = —asinz; —brs+cu+(t)coszy

Take s = 3 -+ zz. Then,
3§ =1 — asinxy — bxy + cu+ {(t) coszy = cfu + 8]

where

d= —z— [Iz —asinr —bry + Q{t) COSZ]]

1-b t)
5] < |%||z1|+‘—c— |22 + % < 16.1865|z,| + 1.815]z,] + 1.1111

Take s
u = —[16.1865}z,] + 1.815|z2] + 2] sat (E)

The trajectory reaches the boundary layer {|s] < £} in finite time. Inside the boundary layer, we have
4, = —z; + s. Taking V; = z2/2, we obtain

Vi=-al+ziz < -2} +lmle < -(1-0), Viml2 5

where 0 < & < 1. Thus, the trajectory reaches the set Q, = {|z1] < £/8, |z1 + z2] < €} in finite time. Inside

this set,
|z2l =z + 22 — @ < |21 + 22} + |7 | S (1 + 1/8)e

For 8 = 0.9, we have |za] < 2.11¢. Choose £ small enough that 2.11¢ < 0.01. In particular, take £ = 0.004.
e 14.6 (a) The system &; = z172, with 7, viewed as the control input, can be globally stabilized by

%3 = —2%. Take s =z} + 5.
§=21y8) + 32 = 22770+ 21 +u

Take s
u=—221; — 2, —sat (E)
8s = —|s]|, for|s|>¢
Hence, the trajectories reach the boundary layer {|s| < €} in finite time. Inside the boundary layer, we have
I = —:.,":1i + x18
Let W = %zf
Vi=-al+als<—al+ale<-(1/2af, Viml>V2e
Thus the trajectories reach the set 2, = {|z1| < v2¢, |s| < £} in finite time. Inside {}, the system is

represented by
= -2+ 318, é=-s/c

The foregoing analysis shows that the system z, = —z¥ + z,5 is input-to-state stable. It follows from
Lemma 4.7 that the origin of the cascade system is globally asymptotically stable. Thus, every trajectory
inside {2, converges to the origin as t tends to infinity. Since all trajectories outside (2, reach 1, in finite
time, we conclude that the origin is globally asymptotically stable.

(b)
o[22 o[

adsg= [ _II 1 ] , detG = det[g,adsg] =71

Hence, G is singular at z = 0. From Theorem 13.2, we see that the system is not feedback linearizable in
the neighborhood of the origin.
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s 14.7 The system is in the regular form with n = [ 2 ] and £ = z3. Design 73 = ¢{z1,x2) such that the

origin of
1 = —x; + tanh 1y, Eo=x9+ ¢

is globally asymptotically stable. Take ¢ = —2z; and V' = (1/ 2)(z? + az3), where 6 > 0 is to be chosen.

. 2 2 2 2 jz1] T1 -4 1
= —x% + 3y tanh zy —az; < —z7 + 11| |22| —aT3 = — 2][ ]
1 1 2 2= 1 lz1] |22l 2 [ [IEI ] [ _‘% a 132|

-1
where we have used |tanh ;| < |z,|. Choose a > 1/4 such that @ = { __1 a2 ] is positive definite. Take

|

a=1. Then V = (1/2)(z? + z%). Now, take s = 23 — ¢ = 23 + 27>
$=u+8(z)+ 2zx3 + 23

Take s
u = =223 — 273 — [B(z) + Fo] sat (-E-) , BPe>0

sé= 88 — (B + Bp)s sat (z)

For |s] > &,

33 < Bls| — Bls| — Bols| = —Fals|
Hence, s reaches the boundary layer {|s| < £} in finite time. Inside the boundary layer,

& = —z; + tanh s, Fo=-xz2+ 5

. 1, o 1 2
V < =Amin(@)lInllZ + |22 ls] < -§i|ﬂ||3 +linll2 |8l < -501 - OMInllz, ¥ inllz 2 il

where 0 < 8 < 1. Inequalities (14.14) and (14.15) of the text are satisfied with | -|| = || -]l2, o4 (r) = aa(r)
(1/2)r2, 7(r) = (2/8)r. The constant k; = 1 since s is scalar. Thus a(r) = a2(y(r)) = (1/2)(2/8)*r?
(2/62)r2. The sets 2 and Q. are given by

1 2
Q= {E(tf +23)<co} x{ls| <}, @2 §§-c2

1 2
Qe = {5(1*3 +23) < 9—252} x {|s] £ €}
Choose ¢ and ¢p such that {||z]|l.c < k} C 2.
oo <k = las| <k, fori=1,2,3 = l(:n:z-l-zz)gkz and |8} < 3k
9 1 2

Take ¢ = 3k, 8% = 0.9 and ¢p = 20k%. We need to estimate the ultimate bound on z;.

2?4+ 13 & 5552 = |z) < % = 2.1082¢
Choose ¢ small enough that 2.1082¢ < 0.01 or ¢ < 0.0047.
e 14.8
Gme €= (- C/F) = (= EVE) + 6
Aly) Aly)

214



where
1 1 c ¢
f=|——— || —
(A(y) A(y}) (A(y) A(y)) ‘/ﬁ
Let the sliding manifold be e = —kyo, k1 > 0, and set s=e + kyo.

1

A(y) (U, - é\/ﬂ) +4§+ kle

i=
Take u = é,/§ — A(y)kie + A(y)v. Then

§=v+6
It can be verified that

é-—c _ AQy) - AW) Afy) — Aly)
YT Aam et am

23
8] = < EV@+ sk le] + ealv)

Take
1
Bz) = T [ﬂ\/ﬂ"l‘ 24k |e|] +Ba, Bo>0
- lar

and

v = —fB(z) sat (g)

e 14.9 Part (a) follows from elementary matrix operations, and part (b} is a straightforward application of
Frobenius theorem.

e 14.10 It can be verified that § = Gv + A. Therefore, the control can be taken as in (14.11) with o(z)
replaced by g(t,z). The analysis proceeds exactly as in the autonomous case.

v 14.11 (b)
5:i8; = 8;0; — sigiPo(sife) < g [%54 - 53:'0{31'/5)]

For |si] > ¢, sio(si/€) = |si|lo(1). Hence,

i [(e + xoB)|si| — Blsilo(1)] = gilels:i] — (o(1) — xo)Blsil]
ol

<
< gilelsii = elsil = (@(1) - Ko)Bolsil] < —gobole(1) — mallsil

(c) The foregoing inequality shows that the trajectories reach the boundary layer {|s;| < £} in finite time
and stay therein for all future time. From this point on we can repeat the proof of Theorem 14.1. To prove
a result similar to Theorem 14.2, assume ¢(0) = 0 and ko = 0. For |s;| < ¢,

sio(sife) = e(sife)o(sif€) > ea(l)(sife)* = o(1)si/e
Therefore,
8:4; < gilolz) — o(1)(Bo/€)s3) < kullsli3 + kallsllzlinllz = (ka/e)s?

Using the Lyapunov function W = Va(n} + L5 | s? as in the proof of Theorem 14.2, it can be shown that

i=1

the origin is asymptotically stable for sufficiently small €.
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e 14,12 (a)

) A
88 = 5il— gisiPisgn(si) = g [?si—ﬁilsil]

1

< o |lsidei + 15l D wsjley] -ﬁilsil] < g [Isilei +si] D wii By "ﬁi'siI:l
5=1 j=1
p
= g [lsiles + 180 D wisloy +wj) — (o3 + wi)lsq
7=1

]

r
I-K)a=5 = oi—Y Kijo; = &
F=1

P
(I-—IC)w::b = Wy —ZK."J'!UJ- = b;
j=1
sidi = g [|siloi — Bilsi| — bils:[] € —gibilsil < —gobi|s]

(b) The condition 3_%_, ;; < ko < 1 implies that J — X is diagonally dominant; hence, it is an M-matrix.
Take

1 1
1 .

w = fo |- b=(I-Kw, o=8]| .1, and g=(I~-K)r
1 1

P P
Gi=o0i~ Dok = (1= &i;)8 2 (1 - ko)

=1 j=1
Taking 8 > g/(1 — ro) implies that 2; > ¢.

¢ 14.13 First we show that s reaches the boundary layer |s| < ¢ in finite time. Then, we use the equation

é] = €3
€r—2 T €p-1
ey = —kiey---—keyro 142z

to show that (ey,...,e,—1) is ultimately bounded with an O(¢) ultimate bound. Therefore, e; has an O{g)
ultimate bounded. '

s 14.14 Let 4, f;, and £ be nominal values of e, b, and c, respectively. The state equation can be written as
I = x9, ig:-ﬁSinIl—az’z-f'é[u'f-(ﬂ

§= (&TG)S'IH-'H'F (u)$2+ (c—:c‘:)u+ (C—(_L))COSI]
é é é é

where

216



We have 0.551 < ¢ < 2.4691 and we need to choose é such that |[(c — €)/¢| < 1. We take th = 0.66 and
# =1 so that & = 1.152 results in |(c — £)/& < 0.64. We take k = 0.1. These choices of 1, £ and k result in
4 =9.81 and b = 0.152. For the nominal design, we take

1
u= E(asinzl - kla:l - kz.’L‘z)
. . . . 0 1
which results in the nominal closed-loop system = = Agx, where Ag = k (ks + 5) . Wetake k; = 1
-k —{Kry
and k» = 2 — b=2-0152= 1848 to assign the eigenvalues of Ay at —1 and —1. It can be verified that
P = [ [1)2 gg } is the solution of the Lyapunov equation PAg + A7 P = —I. Thus, V(z) = zT Pz is
a Lyapunov function for the nominal closed-loop system. Consequently, w = [6V/8z]G(z) = é&(z) + z2)-
Substitution of

u =

6=1 [(&Cg“é) sin 2, — (cgé) (21 + 223) + (”C;”é) 2 +C(t)00811]

|61 < prllzllz + p2 + Elivll2

[asinz; —3; — (2 — B)zg] + v

[+ 39 WY

in 4 results in

Hence,

where k = 0.64, p2 = 0.66, and p; is an upper bound on

1 {lac—aé|  [bc—bé
é é é
let 7 = p1|lzil2 + p2 and take
- 2 sgo(w), if nlw| > ¢
v= s
- £z ¥, if glw| <e

The derivative of V(z) = z7 Pz along the trajectories of the perturbed system satisfies
Ve<aglesl
< —z'z4 1

Thus,
< —(1—9xT > 1/3
V<-(1-8z"z, Yiz|22> pY]

where 0 < 8 < 1. For 8 = 0.9, ||z{|> i5 uniformly ultimately bounded by

1 {Amaz(P) \/? _
21/ P Ve 1.2724/€

To ensure that |2;] < 0.01 and 22| < 0.01, choose ¢ such that 1.2724,/# < 0.01. In particular, take
£=06x10"%
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« 14.15 Take )
U =&/ + AW)(~2Cwne — wio + v)

é = A(ly) [eva + Aw)(~20wne ~ o + 1) - ¢y

= ﬁ [(é — o)V + [Aly) — A)~2Cwne ~ wio + v)] + (=2(wne — wlo +1)

= =2fwpne—wioc+v+d

where
1. Ay} - A®y)
§ = ——[(é- it C i . L —w?
W) (€= e}yl + AW (—2Cwne —wio + v)
8] < VB +ed2ene + ko] + aulol
< pley, o) + palv]
where

p(e, i, U) = g\/g + Q4I2Cwne + U:G‘I

The closed-loop system is given by

e _[~2wn -wilfe 1
1= ]2+ [a]eeo
We can now design v as described in Section 14.2.1 to achieve ultimate boundedness with an ultimate bound

that can be made arbitrarily small by choosing ¢ small enough. Therefore, we can ensure that the tracking
error [y — r| < u for ¢ > T, for any specified u.

* 14.16

s 14.17 (1)
i=-z+zu+d)
It takes the form (14.47) with f = —z, G=2%, and T =1. Takey =0 and V = 32°. Then, w = z°. From
(14.48), v = —v23, v > 0.
(2)
i = 2% - z[u — z4]

It takes the form (1447} with f = 2?, G = —z, and I'= —z. Take p = z+z% and V = 32>, Then,
w = —z%. From {14.48), v = x4, 4 > 0.

e 14.18
n=fo(m 8, €=AL+BADu-alz), y=Cc

Let

&Gy =y—r, € =g}—1‘,...
Then

¢ = Ace + Bey(a)fu — a(z)] — Borl?)

Take 1

= @ () _

u a(x)+’?($)[r Ke +v]
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where K is designed such that A, — B.K is Hurwitz-
é= (A, — B.K)e+ B.(v+§)

where

6:7[d-a]+7?‘}(r(”)—1{e+v)

18] < pofz) + kirP| + KK |[2llellz + Elv} & p(t, 2) + klo]

We can now design v as described in Section 14.2.1 to achieve uitimate boundedness with an ultimate bound
that can be made arbitrarily small by choosing £ small enough. Therefore, we can ensure that the tracking
error |y — r| < p for ¢ > T, for any specified p.

e 14.19 The solution is similar to the previous exercise.

» 14.20 (a) The nominal system
Ty =22, Z2=—T)—I2

has a Lyapunov function V(z) = z7Pz = 1.52% + 1172 + =}, where P satisfies the Lyapunov equation
PA+ ATP = ~I. With this Lyapunov function, we have w = 2cT PB = 1, + 2z,.

V = =z} + v (v +8) < ~lizll} - prlizlizlet + mllzilziwl < ~llzlff, for o llellabw] 2 €

On the other hand, for p; ||z(|z|w| < €, we have

8N m

. 1 £
V< -l + [~ Sllapulul? + lelhlul| < -lall+ 5 < <306l or ol 2

(b) Let §(z) = 2(z1 + z2). Then, |4} < 2v2|jz}l2. Choose py = 2v/2. The closed-loop system is given by

i’1=1'2, i2=31+32+v

where v is of the order O(||z]|3). Hence, linearization at the origin yields the matrix [ (1] i ] , which has an
eigenvalue in the right-half plane. Thus, the origin is unstable.

¢ 14.21 (a)
V < —aa{l|zllee) + wTv +wTs
< -es(llall) =, 2 T 02— 5 nhwsl + lelh (o + solfvle)
ictl igr
_ _ (n|1u.| _
< —as(lizlies) = 3 = = 3 mlwil + (1 — o) + Noﬂ]z ||
el g7
= —asllll) + 3 [~ DE - gpus] + 3 (o] + o]
il igl
12
= —oallielle) + 3 [ 20 4 |
el
(b)
V < —asllizllee) + 3 5 < as(llzllee) + kres k1 >0
134

From this inequality, we can show ultimate boundedness as in Theorem 14.3.
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» 14.22 (a) Repeating the calculation of the previous exercise, we have

[ 32 2 2
Vo< -¢+Y |- {mlwi]) _ Kon” |wi
= ¢ c +Iwiipl¢+ £ T

i€r -

- N2
= —¢2+Z _‘{1—50)@ +|wi|91¢]

1A

r e 2
4+ 1[0 = ) P ]

iel b
(b)
_ 42 _1.2 ('POI w;l)?
V< ¢ ¢ +Z[ a- + |wilme

i€l

The qua.d.ratlc form in the braces can be made negative definite by choosing £ small enough. Therefore,
V<- ¢2 which shows that the origin is asymptotically stable.

* 14.23 (a)

- + +
Vs g% m¢liw||z+(P0+P1¢)l|w||2+ﬂon° ST

1
= —¢*- ~(1 - xo)(no + me)llwllz + (oo + p19)lw2

1
< ¢+ o+ pu0) [~ 1wl + ol
£

< —¢2+Z(Po+.01¢)

= Yo lr. emy? 0 o
= -3# -3l 4]*32*"4

1 €
< —jaslliel) + S + 22

e 14.24 The closed-loop system is
t=f+G(¥—yw+46)

. BV av v
vV = + 5.+ GY) + —G (—yw+8) < —as(llzllz) — vllwlz + wilz (p16(z) + sovllwllz)

Bt
-[ ]T[ g | I

-¢%(z) — ¥(1 = ro)llwll} + p1op(z)ljwl|a
Taking -y > p3/4(1 = o) ensures that V is negative definite.

IA

e 14.25 Starting with the system
t=f+Glu+4)

add and subtract the term 1 to obtain
z=(f+Gy¢)+Gu+d—y)

View 8 — o as the perturbation term and proceed to design u == v.
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e 14.26
i=(f+GV)+A+Gv+8)

Outside the boundary layer, we have
V<=6 0o+ )+ FA < ~(1~ )e?

The right-hand side is negative definite for u < 1. Inside the boundary layer, we have
V<=1 = w6 + 1 6lwll - (1 - 5o) B

The quadratic form can be made negative definite by choosing ¢ < 4(1 — p)(1 — so)nZ/p?. Therefore, the
origin is asymptotically stable.

e 14.27
(a) Take u = () + v, where

— e Et,, if [Jzllz > 1
—meA(z) +mlw i 2]z <1

where w? = %%G, and 7o, m are positive constants to be chosen. Use V' as a Lyapunov function candidate.

For ||z||2 > 1, we have

vV = %gU+GW+mF@+ﬁ

met +m +
< -mw%——wﬂ—mwﬁ+th+mmf”mnuz

1 0° +
= —cllzli - (1 - mﬂﬁI[MWM+mmm

1A

Cs 2 C3 2
—=|lz|ls — —||z 1-ko wll; + pllw
5 =12 > llzlfz = ( )" ’ || 1z + pllwll2
Using ||z||3 > |l={l2 for [|z[[2 > 1, we obtain
Suzl2 2 _ 53 11zli2
el = = [(1 = sam (plhwls)? = (elullall + ol

Choosing 11 > 1/[2¢3(1 — xp)] ylelds
- c
V <~ 2l

For ||z||z2 < 1, note that there is p; > 0 such that p(z) < piflz|2 for all ||z||; < 1.

vV = %gu+am+wﬁu+a
< —clizllf = (mp® +mo)liwli3 + orllwllalizliz + mo(m o* + no)llwit
= —ellall? ~ (1 - 50)(mp* +mo)lfwll} + pu fwll2 el
L
< =il = (1~ xo) (mllwl - prllalialiwliz + Fiali3)

Choosing no > p2/[2c3(} — Kp)] yields
. ¢
V< =Szl
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Therefore, the origin is globally exponentially stable.

{b) Set
J(o) = [ :c"l’af:tg J, G= [ {1) ] L8z, u) = a;(:c%+:c§)+azu

Take 9(z) = — (2} + z§) — z; — 2z,. Then

. To 1

t=f+canE=| 5§ 1]
. . . . r[3/2 172
is globally exponentially stable with V(z) = z'Pr = z 1/2 12 z and ¢; = Apin(P) = 1~ 1/V2,
8(z, ¥(z) +v) = ar(zd + 23) + ag[— (23 + z3) — (21 + 222} + v} = (a3 — az){z + z3) — ag(z1 + 223) + agv

3,5, 4 .1 1
18(z, () + v} < 3lad + 231 + gler +222) + Slo|

Take

-y

3 1
p(x) = EI-T? + 3|+ 5]-‘51 +222|, Ko=¢

(%]

Clearly,

VB

3 5
p(z) < sllzll} + = lizllz

Therefore, for ||z}l < 1, we have p(z) < p1||z]|z, where py = (3 + v5)/2. Choose 79 and m; such that
no > pi/[2e3(1 — ko)] and m > 1/[2cs(1 — Ko)]. Take o = 10 and n = 2. The design is now complete.

2

» 14.28 (a) Consider £; = z2 +sin2) and view z; as the control input. With z; = —2z; and V = 2% we

have V < —z?. Now set z = 2, + 22 and V, = 323 + 122

Vo = zi(zp +sinzy) +2(012F + (1 + 62)u + 222 + 2sinz,]
z1(=2z; +sinzy) + 2z, + Blzf + (1 +03)u + 225 4+ 2sinzy]

Take u = —x3 ~ 22, — 28inz; — z + v to obtain
Vo< —22— 22+ z2(v+6)

where
6 = 6122 ~ 6,(371 + 3z + 2sin 1)) + B2 < p(z) + %[vl

where p(z) = 2z} + %|321 + 3z2 + 2sinz,|. Take n(z) > p(z)/(1 — 0.5) = 2p(z) such that n(z) > n > 0.
Using Lyapunov redesign, take
{ -7 sgn(z), izl 2 e
Uy =

-2, if njz| <€

&
which yields
£(1-0.5) . £

'l?:.s-a:?—z2+—=-:c1-z2+-8-
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Near the origin, |p(z)| < ky|z1]| + ka|z|. This can be used to show that the origin is asymptotically stable for
sufficiently small £. In particular, near the origin

) 2
Vo € -l 2+ lalhalmi] + kalal) ~ 2ol

IA

2
< —af =2 D+ (ke | + Kala)

The RHS is negative definite for sufficiently small .
(b} Define e; = xy — r and ez = &; — ¥ = £ + 8inz; — 7 to obtain

é1=€a, ¢é3=~0122+(1+80)u+(zz+sinz)cosz; —F

Proceed as in part (a) to design a state feedback control that drives e towards zero. This time however you
can only achieve ultimate boundedness.

* 14.29
I1 =Ty, &= —asinz; —bzxs+ cu+ ((t)cosz,

Consider the equation %, = 7, and view x2 as the control input. The origin z; =0 can be stabilized by
z = —z; with the Lyapunov function V; = z2/2. Apply the change of variables z; = 7, and 2, = 73 + 71,

to obtain
Zy==21+2, 2Zz=—asinz —bzz+cu+{(t)cosz) — 2 + 2,

Take V = 22/2 + 222 =z%/2 + 23/2.
V = 22 + 2fz1 —asing; — bzy + cu+ ((t) cos z, — 23 + 23}
Take ¥ = —4z2 + v, to obtain
Ve —2f— (de—1)22 + zpcf8 4+ 0] € =27 — 22 + 2p¢[6 + 1]
where we used the fact that (4c — 1} > (4 x 0.551 — 1) > 1, and

6= %{—asin::; — bzy + {(t) cos z1]

satisfies the bound

6] < 16186521 + 0.242|a5| + 1.1111 E 5
Take
{ — 7 8gn(z2), ifnlze| > ¢
=
2 -
- ZIT?-z’ if njzg| < &
which yields
. _ ] :
VS-ai-2i+7<-1-0zlE, VYlizlle 2/
where 0 < 8 < 1. For 8 = 0.9, ||zl]z is uniformly ultimately bounded by
1 /¢
5\/; = 0.527V/%
Using the fact that
7= [ _11 [1) ] z = |lzll2 £ 1.618]z)}2

choose £ such that 0.527/z < 0.01/1.618 to ensure that ||z|z < 0.01. In particular, take e = 10~4.
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e 14.30 We start with the scalar system #; = 71z, and view z» as the control input. We can globally
stabilize the origin with z» = —z} which results in &; = —z}. A Lyapunov function can be taken as
V(z1) = 122, Now consider

1 1
Va(z) = 5-"’% + 5(152 +13)?

Vi, = 2121 + (22 + 2}) (&2 + 22131) = 71(2132) + (T2 + 23) (71 + u + 278z0)

Add and subtract —z}. _
V., = —:1:‘1‘ + (22 + 2:1:1)(:1:';’ +xn+u+ 21312)

Take
u=—{(z + 2, + 22272) - (T2 + 227) = —(21 + 22 + 22} 7,)

V=—z}-(22+3})
which shows that the origin is globally asymptotically stable.
e 14.31 The system is in the form (14.53)-(14.54) with
f=a+(m-aPP, g=1, fa=m, ga =1
Take ¢(z1) = —a — {11 —a'/3)® —z; and V = 1z7. Use (14.56).

e 14.32 See Section 2.4.3 of {108].

s 14.33 (a) The system is feedback linearizable. Take u = —2z; + -z, def #(z). Then, * = Az where

0o 1
A= -1 -1

(b) Let £ = z — ¢().

is Hurwitz. Hence, the origin is globally exponentially stable.

i = Az + BE, é=v—%:—;(Az+BE)

where B = [ [l] ] Let V =27 Pz + }€2.

V=—2Tz+2eTPBE+£ v - g%(m + BE)]

Take 5
v= a—:(A:c + Bg) - 2z2TPB - ¢

' = _$T3_52

which shows that the origin [in the coordinates (z,£)] is globally exponentially stable. Note that in the
original coordinates (z,z) we can only conclude global asymptotic stability due to the nonlinear change of

variables £ = z — @(z).

e 14.34 Start with #; = ~z; + z2 and view > as the control inpﬁt. We can take ¢;(z) = 0 which results
in £y = —z;. A Lyapunov function can be taken as Vi = Jz}. Now, let V, = (2% + z3).

Va = z1(—z) + T2) + Ta(z1 — 22 — 2123 + u)

Take u = -2z, + z123-
’ 2 2
Va = ~I] — I3
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which implies that the origin of the second-order system
F) = —2y + %2, &2 =-—-21— Iz
is globally exponentially stable. From the third equation
i3 =—-2r3+ 1 + 172
it is clear that the origin of the full system is globally asymptotically stable.

+ 14.35 Treat 6 as an unknown parameter, but assume that e will be available on line. Our design, however,
should work with any a that satisfies |a| < 1. Start with £; = z3 + 67 and view z» as the control input.
Let ey = 7y — asini, Then,

€y =Tz + 6':1:? —acost

Take 23 = —kye; + acost def é1(ey,1) where &y > 0. With Vj = %ef, we have

Vi

= —kléf + 9811? < —k1ef + 2]61”11|2
< —klef + 2|81|(|e1l + a)2 < ——kfef + 2'61'3 + 4’31!2 + 2{81|

By choosing k; sufficiently large, we can make e; ultimately bounded and the ultimate bound can be
made arbitrarily smail. Now, proceed to the second step of the backstepping procedure. Let z; = e; and
22 = g — qSl(el,t) =2 + k1€1 —acost.

==k +82f + 22, azry+u+ki(~kz + BSL'E + 23} +asint
Let V, = 122 + £ 23. The reason for including the constant b will be revealed shortly.

Vo = z21(~k1z + 022 + 25) + Wzafzs + u + k1 (—k121 + 622 + 22) + asin]

1
U= -{33 + ki(—k1z + z2) +asint] — g(zl + kpz3)

Vo = —kizf 402,23 + k10223, — ko2?
< =k +2a(lz] +a)? + 262k ()21 + a)?)za| — ko2l
< —klzf + 2]21!3 + 4|21|2 + 2'21| + 2b2k1 ([2]'2 + 2|21| + 1)‘22| - kzzg

Due to the cubic terms on the right-hand side, we need to limit our analysis to a compact set. Let () =
{VL{z) < c}. Choose c > 0 such that z(0) € £2. Using the fact that ||z(0)]|« < 1, we have

121(0)f = |z (0)] <1

[22(0)] = |22(0) + k1 (0) —a| <1+ k1 +a<2+ K
The initial state z2(0) depends on k;. To be able to choose ¢ independent of ky, we have included the
coefficient b in the Lyapunov function. Take b= 1/(2 4 k;). Then

Vale(0) = 5220) + O<z+y=1

1 2
]

202+ k)2
Therefore, we take ¢ = 1 and limit our analysis to the set @ = {V,(z) < 1}. Notice that {z;| < v2 in Q.

Therefore
2021 + 4|z f* + 2z1] < (2V2+ )|z ]2 + 2z
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26%k1 (|21 + 2|z1] + Uzal < (2 + V2)|za| 22| + |22
where we have used the fact that k; /(2 + k;)? < 1/2. Thus,

Va € ~k12f + (2V2 + 4)27 + 2z1] ~ kazd + (VZ + 2) |21} |25 + |22
Take k1 = 2v/2 + 4+ 2a and k; = 2a, where o > 0. Then
< —allsll; + VBlizlla + [-allzll} + (VZ+ 2)iz1] |22])
By choosing a large enough, we can make the bracketed term negative definite. iience,
< —allzllz + Vilizlls < =(1 = Ballzll3, ¥ llzliz > V5/aB, 0<B<1

which shows that z is uniformly ultimately bounded and the ultimate bound is proportional to 1/a. By
¢t -ing o sufficiently large, we can make the ultimate bound arbitrarily small. Finally, notice from the
#3 : juation that boundedness of z, implies boundedness of z3.

+ 14.36

e 14.37 Apply backstepping to deal with the nominal system a.nd then Lyapunov redesign to take care of
the uncertain term 4. Start with £, = —z; + 2;2,. Using Vi = 1%, we take z, = 0 to obtain Vi = -z3.
Now consider
I =—T1+ 7173, T3=2Z3+ T2
Take V; = 122 + 23,
Va = ~a} + 22(2} + 22 + 73)

Take z3 = =z} — 213 to obtain _
V2 = ~zf - 73

Now consider the whole system with

1
32+ (33 +$1 +222)2

V=
2

24+ =

N:Il—i

V = —z} -2 + (25 + 2% + z§)[~a(z) + 8(z) + u]

where afr) is known. Take .
u=oalz)—(z3+22 +22) +v

to obtain )
V=czd—2l—(zy+2i+22) +w(@d +v)

where w = z3 + 2% + zg. Now apply Lyapunov redesign to finish the problem.
e 14.38 (a) Consider the system
) = -z, + tanh z,, £y =23 + 23

and view z3 as a control input. We saw in Exercise 14.7 that :1:3' —2z; globally stabilizes the origin with
= (1/2)(2? + z2) as a Lyapunov function. To backstep, let z3 = 13 + 2z,.

1 = —&1 + tanh z,, I = —22 + 23, 23=222+223+u
Let V, = (1/2)(z% + 22 + 22).
2

f/a < - (.’L‘? + :!:12;) + x223 + 23(272 + 223 + u)
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. 1
u=-3T2—2T3—23 = V,<— 5(13"‘3%)‘23

(b) With 4 # 0, we have
) = —z; + tanh 22, Ty = —x3 + 23, Za=2r,+2r3+tu+4d
Vo< - %(xf +22) + 2923 + 23(2%2 + 223 +u +6)
=32 273 —z3+v = V,<-— %(sf-ﬁ-zg) — 22 4 z3(v + §)

Take
{ —p(z) sgn(zs), if p(z)lzs| > €

yasii if p(z)|2s) <
For p(zx)|z3] > ¢, z3(v+ &) < 0, while for p(z)|z3| < €, 23(v + ) < £/4. thus,
Vo< - 3(et+ el -+ S-S - 0l Vel 2 /2
-_— 2 1 2 4 2 2 9
where z = {z1, T2, 23] a.nd 0 < # < 1._The conditions of Theorem 4.18 are satisfied w1th 11 =11 iz,

a1(r) = a2(r) = (1/2)r?, and p = /(22)/8. Thus, [izl|z is ultimately bounded by a7 (aa(u)} = p.
Consequently, |zi] is ultimately bounded by p. Choose € such that u < 0.01.

2e 8
1/ < < - —4
7 < 001 & ¢ 2><10

¢ 14.39 (a) Letzy =y —rand 22 = 3.

Take & = 0.9 and € < 0.45 x 10~4.

: . k 1 1
I = z9, zz=g-;n—zz+;F+-’;d

Take F = mg — kyzy — kazz + v, where k; and ks are positive constants.

o 1 0

t=Ax+ B{v+d), where A= , B=
& _L...__.l"z"’" L
m m

The matrix A is Hurwitz. Let P = PT > 0 be the solution of the Lyapunov equation PA + ATP = —].
Take V = zT7 Pz, w = [§V/8z]B, and v = —ypw. It can be shown that

V< |zl + i
= “ "2 4,70
Therefore, z is uniformly ultimately bounded by the ultimate bound

i )‘maz (P )

—_— 0<b<l
4798 Y Amin(FP)

Given any u, we can choose -y large enough to ensure that

& [ Amas(P)

#1080\ i (P)
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In summary
Y(z1,22) = mg — k123 — kaxa ~ yow
(b) Let z = F — ~(z1,72).

i = Az+ B(z+d-yw)
oF JaF dy . By

Pom oy o—g + oy F =
Iy ! Iz 3 oz ! 0z,

where the functions a;(-) are known and as(+) # 0. Let V, = 27 Px + $72.

2 = ") + aa(Ju + o3()d

Vi = —zTz + wz + wd — pw? + 2for () + az(-)u + as(-)d]
Take u = ~ ;ﬁj{al (-} +w—mz}
4

Vo < =Tz + % — |zl + za5(-)d
470
It can be shown that by choosing vy and v large enough, we can achieve ultimate boundedness and the
ultimate bound can be made smaller than .
e 14,40 Start with the scalar system #; = —z; + z¥{z2 + 6(t)] and view 2z, as the control input. This

system takes the form (14.47) with f = —z;, G =z}, and ' = 1. Take ¢ = 0 so that f + Gy = —z and
V = 122 Then,w= z}. Using (14.48), the control is taken as

def
z2 = ~n2i = $(z1), n >0

Now Let
2 =11, z=23+n7
5 = —n+282~nd+6@)]+zin
= u+dInzd{-a+2Z[-mnz +6()] + 22z}
Consider 1 )
Va(z) = '2'212 + '2'33
Vo = =22 + 2i[-n4 + () + zizz + uzo + Iz {2 + 25 [~} + (1)) + 222}
Take
u= —zf + 37125’ + 37122'17 - 3'112sz +v
Vo = =22 + 2][~m12} + 6()) + vz + 3mzi 226(2)
Take
v=-—nznlBnn) -2, 2>0
) 2 2
Vo= —2f =22 + +23[—mad + 6(t)) — merfedzd + 3melad(t) < —28 - 22 + Zkl + f—“—
M Y2

Therefore, the state is uniformly bounded.
e 14,41 The procedure is similar to the previous example. In the first step, we take z; = z; + 23 and
V = 122, The final control and Lyapunov functions are
u=(1+22 +427) (=2} — 12 - 2122) + 2§ — 22~ M2z2(1 + 222 + 4 2f) %2}
1, 1
Va= Ezl + Ezg
where z; = 71, 22 =22 — %1 = 2} =z}, 1 > 0, and %2 > 0.
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¢ 14.42 Let C = BT P and define the system
i=Azx +Bu, y=Cz
With V(z) = iz Pz,
V=2T(PA+ ATP)z + 2T PBu < yvTu

Hence, the system is passive. It is also zero-state observable since the pair (4, C) is observable. By Theo-
rem 14.4, the origin is globally stabilized by u; = —k sat(y;).

e 14.43 Consider the system
i1 =29, d2=-I3+V, Y=322
and let V = Lzt + 328
V= :rf.’z:z - z:i';r:g + zov = Y
Hence, the system is passive. With v =0,
y(t) =0 = (1) =0 = () =0 = xn1(t) =0

Thus, the system is zero-state observable. Therefore, we can globally stabilize the system by w = —4(y},
which shows that the system
iy =23, &2= -] +9P(u)

can be globally stabilized by u = —y = —za.
e 14.44 With u = ~(b + v)/a, the system can be transformed into
1= fo(n0}+ F(np)y, y=v
The representation fo(n,y) = fo(n,0) + F(n,y)y is always possible. The system y = v with output y is

passive. Thus, the system takes the cascade form (14.80)-(14.82). It can be verified that all the assumptions
of Theorem 14.5 are satisfied. Thus, the origin can be globally stabilized by the feedback control of (14.84).

e 14.45 With © = —zy + o2 + T123 + v, the system can be written as

i] _ I 1 s
BRESRHE

which takes the cascade form (14.80)—(14.82) with y = x> as the output. Consider the (unforced) driven
system

i =-z, #3=121-2%3
and take W = (A/2)z} + (1/2)z3.
7
. ) -1/2
W=—;\zf+:u‘1$3—2“’§:_[i; [—1/2 2/ ][2]

The 2 x 2 matrix is positive definite when A > 1/8. Take A = 1. Thus, all the conditions of Theorem 14.5
are satisfied and, by (14.84), a globally stabilizing state feedback control is given by

v=—(T1 +T1T3) —~22 = u=—2n
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* 14.46 With u= —23 + 1 — &2 + v, the system can be written as

I3

_zz+v]r y=1I3

& = ~(1 +y)zd, [;:]:[

which takes the cascade form (14.80)}-(14.82) with z = z;. The driving system is passive, as can be seen
from V = 2(z3 + x3).
V = 2923 — Zo23 + 230 = v

It is also zero-state observable since
) =0 = 23t} =0 = () =0

For the driven system, we have W = :—z‘{. Thus, all the conditions of Theorem 14.5 are satisfied and, by
(14.84), a globally stabilizing state feedback control is given by

v=zl-23 => w=-2i+l-z,+28 14

. 14.47 (a)
y=b+au=b—2,9—aﬁsat(g)
F £
. b b ¥
yvy=a [(;" 5) y — By sat (‘E‘):l
For y| > &,

¥ < alo(w)ly] - Blyl] < —aobolyl

Hence, y reaches the boundary layer {|y| < £} in finite time. The rest of the analysis is similar to the proof

of Theorem 14.1.
(b) Similar to the proof of Theorem 14.2.
(c) b(r,y) and b(y) are continuous functions. Hence, they are bounded on any compact set. o and & are

bounded from below.
I3

(e) The system has relative degree one since § = ~z3 — z3 — u. The change of variables T(z) = [ T2+ T3 ]
T2
transforms the system into the globally defined normal form

m=-m+y°, h=-m+m-—(-9)° j=-y—(p-yP-u

It can be verified V(n) = %n‘l‘ + %ng satisfies the inequalities stated in the statement of the exercise. The
functions ¢ and bare given by a =l and b= —y+ (2 —y)®. Wetake @ =1 and b= —y —y*. The control

can be taken as
’ u=—[y-'y3—(g+ﬁo)sat(§)]

» 14.48 (a) Let A, B, and K be diagonal matrices whose diagonal elements are a;, b;, and k;, respectively.
The closed-loop system is given by

&= f(,~Kz), i=-Az+by, y=h(z)
The derivative of W = V + 12T KB~}2 is given by
W=V+zTKB '3 < -2TKy - 2TKB 42+ :"Ky= —2TKB 142 <0

Z{ty)=0 = =0 = z(t)=0
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due to zero-state observability. By the invariance principle, the origin is globally asymptotically stable.
(b) Repeat the analysis of part (a). For global asymptotic stability you need

/Iqb.-(or) do = ocoas|zn = o
o

so that the Lyapunov function will be radially unbounded.
(c) Take u = mgsiné — kye + v, where e = # — §; and &k, > 0.

méeé + kpe = v
The conditions are satisfied with V = {méé? + Lk e?. The control is given by v = —kz where

(s) _bs
w) s+a

¢ 14.49 It follows from Lemma 4.7

+ 14.50
» 14.51 (a)
Jo = ke(dats — Mpda) — To = ke Ag(ip cos p — ig sinp) — Ty = kedgig —
dadd = Aada +Ab;\b = - Eﬂ A2+ R' M(igAa + inAs)
= - & A+ = s M)\d(:ucosp+z;,smp) = - & A2z B MAgig
Assuming Ag > (, we can divide through by A4, to obtain
. _ R, R
Ad = I Ag + L. Miy
. f\aj\b -~ Abxa
= TR
1 ( R RM R, RM |
/\—.21- (—- I—— Aarg +pw)\,_2, Lr Aalp + — L Ao +p(.-.hl’\2 T. )u,a,,)
R,.Mlgr
T

(b) For constant w, 4g, and Aq4, p is constant. Whenever p # 0, p will grow unbounded. However, the
transformation depends only on sin g and cos g, which are always bounded.
(¢) Flux regulation: the closed-loop system is given by

ha=— —A + M [ k(Ad—A,)} (k+R') (A = o) | (14.)

Hence, A4 approaches A, monotonically. The time constant can be controlled by choosing k.
{d} The closed-loop system is

, R.,  RM A /M = k{Aa = Ar)
Ad=— —
d L. Ad + I Iq sat ( Ta
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At the initial time, Ag — Ar < 0. There are two possible cases:
AfM =k(Ma—A)>1g or A JM—k(Qa—-A) <y

In the first case, g = I4 and the closed-loop system reduces to

x _ R‘r RrM
Ad = I, Ad + I,

Ia

Agq will exponentially approach MI; with the time constant L./R.. Consequently, A./M — k(Ag — A,) will
exponentially approach Ar/M — kEM(Iq — A, /M) < A\ /M < I;. Therefore, there must be some finite time
ty such that at t =y, A, /M — k(A4 — A;) = I; and the closed-loop system is described by (14.1) for ¢ > ¢,.
g will exponentially approach A, for t > ¢, with the time constant L,/(R, + kL,) which is smaller than the
time constant L,/L,. Therefore, the overall settling time is less than 4L, /R, .

If, on the other hand, Ar/M — k[A4(0) — A.] < la, the closed-loop system will be represented by (14.1) for
all ¢ > 0 and the settling time will be 4L, /(R, + kL.). With the choice k = 0, the second case will apply

and the settling time will be 4L, /R,
(e) Speed regulation: assume Ay = A, and consider the equation

Jo = kehvig — To % Juig - Ty
where p = kA /J. Let e = w —w,.
é=0 -y = pig — TofJ — p(w)/J — oy
Assume
TofJ + d(w)/J + Wy
7
over the set {|e| < c¢}. Take iy = -1, sat(e/e). Then

eé = e [—,qu sag (E) ~TofJ — d(w)/J —d:,]

p [—I,,e sat (f) + (I, - b)lel]

<I,-b b>0

IA

Forle| > ¢, :
eé < —publef

Hence, for all |e(0)] < ¢, e(t) reaches the set {|e] < £} in finite time.
(f) Let ég = e and 2 = koeo + &. Then

= k06+#iq "’To/J_d-’(w)/J_d’f
Assume .
koe = To/J — d{w)/J ~ iy
u
over the set @ = {|eg| < c/ko, |2} < ¢}. Take i, = —I, sat{efe). Then, for all (ep,e) € 2 and |z| > ¢, we
have

<I,-b b>0

si=z [-—qu sat (E) + koe — Tp/J — d(w)] T — w,] < ~pblz]

which shows that all trajectories starting  reach 2, = {Jeo] < £/{ko61), |z| < £} in finite time, where
0 < 6; < 1. Inside 2, we want to show that the trajectories asymptotically approach an equilibrium point
where e = 0. The equilibrium point will correspond to the steady-state condition w = &, @ = 0 and
T, = constant. The equilibrium equations are

0=¢g, 0= —plzfc— (&) T — To/J
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Hence, at equilibrium, € =0 and 2 = ke = —{c/uJI,)[@p(@) — To]. Let
ép = eg — &g, z=z-Z
The new state variables {€p, Z) satisfy the equations
fo=—kofo+ 7, =kl —kodo) = (nlg/€)Z + ¥le,t) + v(2)
where ¥ = [p(w) — ¢{wy)]/J and v = —[d(w,) — ¢(@y)]/J —sr. Assuming that ¢ is Lipschitz with a Lipschitz

constant £, it can be seen that [y] < (£/J)e| = (¢/J)|%—ko€ol and lim;. o0 v(f) = 0. Using V = (1/2)(82 +2?)
as a Lyapunov function candidate, we have

= —koBh + &0Z + koZ® — kRzég — (ul,fe)Ft + ZY + Fv
< —koy + |&o] 12| + ko2® + K§12| |éo| — (g /€)Z* + (£/ IZ? + (kot/J)|Z] |Eo] + 2v

_ [ Jéo| ]T[ ko —0.5(1 + k2 + kot/J) [ féol
[ | -08(1+ K+ kot/T)  (ulfe)—ke— ¢/ || I3

v

] + v
Choose £ small enough that the 2 x 2 matrix is positive definite; that is,

kol(plq/e) — ko — £/J] - 0.25(1 + kg + kol/J)* > 0

Then, it can be shown that (2{t), Z(¢)) tend to zero at ¢ tends to oo.

(g)

Jo = k(Aais— Asia) = TL = ky[Aaiy = Apia + (Aa = Aadis ~ (0 — Np)ia] - T
= kAq(ipcos p—igsinp)

+k ] G —As) -(xa—An)]{ﬁ;’ :gil:oﬂ”::]-n

= kiAdig + ke(egia — eqiq) — Tp

f\d/.\d = ).'uj‘a + xbib = - & 3+ E: M(ia:\c +ib;\,},)
L, L,
R 2 B . o R, R
I, Af+ I MAg(igcosp+ipsinpg) = I Az + o MAgig
Assuming A4 > 0, we can divide through by A4, to obtain
; A, R,
a=——X++— M
d I, d + I, iq
s ia:\b_:\lirj\a:;
? A2+ A2
1 R o o - M . R . . - : .
= s3l- Er’ ’\n’\b‘i‘Pw/\,z,'f'Rr )\aib+£r— Aa)ub+pwz\§—M Abla
AT I L L I,
3 R.Mi,
= R T
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éa = [~(Aa = Aa)sinp+ (A — Ag)cosplp + (Aq — Aa) cosp+ (X — Ap) sinp

= et [- L&r(x“ — ) = pw(he = As) ~ (R';R')ia + (R’;R')Mia] c8p
+ [- (30 = 20) + o = Ae) - (B, —Fl, 4+ & LTR'}Mu] sin p
= ep— L&Fe‘g - pweg — £R-%R’))\d+ %%MM d
= f:e,,+ Rgﬁ:"eq-k (B 'rR')(Mid—,\d)
ée = [~(ha=Ag)cosp— Ay — Ap)sinp]p— (Aa — Aa) sin g + (As — As) cosp
= —eap— [- L&r(ia—f\u)ww(f\»—)«a)— (R';R')J\ﬁ (R’;R’)Ma'a] sin
¥ [— L&r(:\b—h) +pw(dg — o) — (R';R'.)ib+ (R';R”)Mib] cosp

'—edp‘ - L&eq + we + '(—R%R'-)Miq
R, _ AMi,,  (B-R),.
LY I I, Mi

(b) Repeat parts 3 and 4.
(i) With V = (1/2){e2 + %), we have

I

V = egba+efy = %:(e§+e';f)+ g?L;i)Meqiq
< - 0 By 'Mueuf
< - EZ e, v e ER%_&&)‘ Ml
where 0 < a < 1. Using Theorem 4.18, it can be shown that
el < exp [ Q=] oo 4 | B RrR’”qu
= A [exp(-'yt) (lk)(f)ﬂ) + (R’I;TR') Jf)f’]

where v = (1 — @)R/L,.

0))
2pM . .
z = kpe + L7 1A —ea)ig + eghe /M) =T /d — G0y
Restrict analysis to a region where A, — e > 0.
oM, legAr/M + (BLJ/2pM)(koe — T1/J - )|
22 < 3750 ed){zI sat( )+|| O = ea) ]
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The controller will work if
leaAe/M + (3LJ/2pM)(koe = T1/J — i)

(A'r"ed) SIq_b
e 14.52 (a)
§ = Ae+E = Aé+§- g
= Aé+ M Y-C¢-Dj—g+u)—ig
= Aé+ M -C§—Dj—g+ Mo+ L(Cd+ g+ Mg, — MAE)] — §r
v+ A
where

A=(MT7M-Iv+Aé+M-C4—Di—g+L(Ci+§+ Mg, — MA&)} - §r

When L =0, .
A=(M"'M-Dv+Aé + M7Y-C4— D~ g] - Gr

When L =1,
A = (M'M-Iw+Aé+ M -Cj-Dj~g+(Ci+§+ Mg, — MAE)| - §,
(MM = I)(v—Aé+§)+ M7(C~C)g—Di+j—g]

(b) Write Aas A = (M~=1M — I''v + &, where & is independent of v. Let p be an upper bound on ||6|s0-

4l < | (15 = o) |+ 116l < rollvlen +

(€)

8i8; = 8i(vi + &) = —Ps; sat (%) + 84
For |s;] > &,
8:8; £ =B8] + ] (p + sollvllc) € —(1 — Ko)Bls:} + plsil
Choose . p .
521_"04‘[90, DBU>0

8i8i £ —(1 — xo)Blsi| + (1 — ko) (B8 — Bo)lsil £ =(1 — xo)Bolsi
Hence, s; reaches the boundary layer {|s:| < €} in finite time. Inside the boundary layer, we have é = —Ae+s.
Since A is diagonal { A = diag{A1,---,Am)),

éi = —Ajeg + 8
eiéi < ~Xie? +ele < —(1-NNie?, Ve > £/(0M)
where 0 < 6 < 1. Hence, e; reaches the set {|e;| < £/(8);)}} in finite time. The ultimate bound on e can be

estimated by (¢/8)\/2om, (1/A;)? since
lellz = \Jzeg < \JZ (5-) = g\lz (Ai)

i=1 i=1

(d) We recover the previous result with a finite region of attraction because the analysis has to be limited
to a set where the inequality 5 > fp + p/(1 — ko) is satisfied.
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e 14.53 (a)
§=Aé+ MY (-Cq—Dj—g+u) - g

W = sTMs+ %STMS
sTMAé+sT[-C(s — Ae+ ¢,) - Dg— g+ u] - sT Mg, + 15T Ms
= +3sT(M -20)s+ sT[MAé + C(Ae—gr)— Dg ~g+u— Mg]
= s [MAé+ C(Ae - ¢y) - D§ — g — M, + u]

(b)
W = sT[MAé+C(Ae~g,) —Dg—g— Mg +v+L(-MAé — C(Ae — ) — § + Mi,)]
sT(v+ A)
where X . )
A=MAéE+C(Ae—§;) — Dg— g~ M§r + L(—MAé - C(Ae — g,) — § + Md,)
When L =0,
A=MAé+C(he—¢.) — Dg—g— Mg,
When L =1,

A=MAé+ C{Ae — ¢:) — Dg - g — Mg, — MAé — C(Ae — §,) — § + Mg,

(c) For |is|l2 2 €, w(s/€) = s/||sll2, and for ||s||2 < €, w(s/€) = s/e. Thus, for ||s||s > &, we have
W= (-p s A) < =Blisll + lslialAls
llsll2

Choose B > ||Allz + o, with Sy > 0, to obtain
W < —Bolisllz < —Poe,  for W > Ape?

This inequality shows that the trajectories reach the positively invariant set {W < Ape?} in finite time.
Inside the set, we have ||s||z < ey/Ap/Am. Using the equation é = —Ae + s we can calculate an ultimate
bound on e. In particular,

eTé = —eTAe + eTs < —kllell2 + |lellze /P a1 /rm

which shows that the ultimate bound on ||e]|2 is proportional to .
{d) We recover the previous result with a finite region of attraction because the analysis has to be limited

to a set where the inequality 5 > ||Allz + Sp is satisfied.

e 14.54 Simulation results for the different control laws are given in Figures 14.2 to 14.5. The controller
parameters are A = 10/, £ = 0.05, and 8 = 30. The control saturation levels are Uy = 6000 and U, = 5000.

¢ 14.55 Simulation results for the different control laws are given in Figure 14.6. The controller parameters
are K, = Kg = 7000]. The control saturation levels are U/; = 6000 and U/, = 5000.

e 14.56 The equation of motion is given by

6] _ u _ [ I+mL* mLcos#
Dw)[;’fc}_[mwzsinﬂ—kzc]’ where D(")‘[mLcosa m+M]
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Figure 14.2: Exercise 14.54(1).
(a) Let
V= 1 'I‘D 8 1.2 — é
= zv D(f)v+ 5kzf, where v= ;
[
V = oD@+ LT [ D . ""Ias“‘g ] v 6 + kzot
1 u 114 s 1| —BEmLsing .
= [6 2] [ mLé?sin b — kz, ] +z206 & ] [ -§mLsinf ]”‘”“"

= 6bu
Hence, the system is passive. Check zero-state observability with y = §. When u = 0,
y(t)=0 = 6(t)=0 = #()=0 and 6(t) = #(constant)
6(t)=0and () =0 = Z.(t)cos#=0 and (m+ M)E, = —kz.(1)
cosB#0 = E()=0 = z(t)=0 =2z(t)=0

Thus, y(¢) = 0 does not imply that 8(t) = 0. The system is not zero-state observable.
(b) Let u=-¢(8) + w.

o
V = -;-‘UT.D(e)‘U + %kxf +/ ¢1 ()\) d)
i
V =8[-¢:1(8) +w] + $1(6)6 = bw
Hence, the system is passive. Check zero-state observability with y = . When w = 0,
y()=0 = 6()=0 = 4(t)=0 and 8(t) = 6(constant)
By =0and §(1) =0 = mLi(t)cosd=~¢,(0) and (m + M)i. = ~kz.(2)
cos8 # 0 implies that z.(t) is identically zero. Then,
mLi. cos8 = ~$1(8) = (@) =0 => 6=0
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Figure 14.3: Exercise 14.54(2).

Hence, the system is zero-state observable.
(c) Since the system from w to § is passive (with a radially unbounded storage function) and zero-state

obgervable, it can be globally stabilized by w = —$,(8). The overall control is u = —¢y (8) — ¢a(8).
(e) Simulation results are shown in Figure 14.7 for U, = U, = 0.05 and K, = K, = 0.1. The settling time

is about 30 sec.
() Simulation results are shown in Figure 14.8 for U, = U, = 0.05, K, = K, = 0.1, and two different values
of £: 0.5 and 0.1. As we reduce ¢, we recover the performance under state feedback.

¢ 14.57 The equation of motion is given by
Gy u _[T+mL?* mLcoss
be [ £, ] - [ mL6®siné — kz, ] » where D(6) = [ mLcosd m+ M ]
A(8) = det{D(8)).
(a)

h = .+ mLf cos@ =
Y =™
s = &4 mLé cosf — mL§? I
o= & m+M m+ M n
= [ DB&cosd 1]~ m+M  —mLcosé u mL§? 0
B A(@) | -mLcos® I+ mlL? mLf?sinf~kz. | m+ Mo
1 ; mLé?
= 62 inf — o] — .
m+M[mL sin @ — kz.] m+MsmB
- __*k o ___k __mL
T T m+MC maM\M T iem
T = 9:§
£ = 8= ! ——=[(m + M)u mLcosG(mLézsinB—kxc)]

A(6)
The transformed system takes the regular form (14.4)-(14.5).
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Figure 14.4: Exercise 14.54(3).

(b) Consider the system

o . ___k ( _ ml <in = o) = _omlL k
M=t = -ogp M- o sinm ), e = 0) = Ry (- =g sings | costis — kang
with the Lyapunov function Vp(7).

mlL
m+ M

2
Vo=- [kms—h (m ~ sinna) cosna] = —¢*(n) <0

Vo=0 = ¢nt) =0 = iu(t)=0 = mn5{t) = nz(constant)
coss #0 = m(t) = m(comstant) = m(E)=0 = mn(t)=0

. ‘mL )
mE)=0 = R)=0 = n - n sinfja =0 => m=0 = 5 =0

m+ M
By the invariance principle, the origin n = 0 is globally asymptotically stable. Thus, the sliding surface can
be taken as s = 0, where

mi . .
s=E-oM=€—k (n: - m+Msm1)3) cosTs + komz = 0 + ko — ky2, cosf

(c)

§ = G+kb-ki+kzbsing
1 . ‘ _ _
= 20 [(m+ M)u -~ mL cos§(mL8*sin8 — kx.)] + k28 — kyz.cos6 + kyz.6sinb
m+M 1 o . . .
= A® {u + o [-—mL cos@(mLO* sinf ~ kx.) + A(6) (k28 — k13, cos@ + kyzr sm&)] }

Choose S(x) to satisfy

1
m+ M

B8(z) > Bo + —mLcos8(mLé?sinb — kz,) + A(B) (k6 — krde cosb + kyzefsin 9)|
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Figure 14.5: Exercise 14.54(4).

for some By > 0. Then, the control law u = - 3(z) sat(s/u) guarantees that

. +M
%< ~fomg - lsh, for sl 2

Hence, all trajectories reach the boundary layer {|s| < u} is finite time. Assuming that the system

= m L (_mL sin s = d(n) +
™m O ] m+ M h m+ M My, W= 8
is input-to-state stable, we can show, as in the proof of Theorem 14.1, that all trajectories reach a set (1,
in the neighborhood of the origin. Local analysis will then show that for sufficiently small u the origin is
locally exponentially stable. Hence, for sufficiently small u, all trajectories converge to the origin as ¢ tends
to infinity.
(d} Since

|-mL cos§(m L2 sin 6 — kz.) + A(8) (ka6 — ky i, cosd + kyz b sin e)|

vanishes at the origin, for any § > fp, the inequality

1
m+M

828+ I—mL cos@(mLé* sinf — kz.) + A(B) (k28 — k12, cosf + kyz fsin 9),
is satisfied in some neighborhood of the origin. Limit the analysis to such neighborhood.
(f) Simulation results are shown in Figure 14.9 for k; = 1000, k; = 1, 8 = 0.1, and gz = 0.05. The settling

time is about 4 sec.
(g) Simulation results are shown in Figure 14.10 for k; = 1000, k; = 1, 3 = 0.1, u = 0.05, and € = 0.1. The

response under output feedback is very close to the response under state feedback.
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Figure 14.7: Exercise 14.56{e).
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Figure 14.6: Exercise 14.55.
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Figure 14.8: Exercise 14.56(f).
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Figure 14.9: Exercise 14.57(f).
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Figure 14.10: Exercise 14.57(g).
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