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1 Introduction
The Nonlinear Control Design (NCD) Blockset provides a Graphical User 
Interface (GUI) to assist in time domain based control design. With this 
blockset, you can tune parameters within a nonlinear SIMULINK® model to 
meet time domain performance requirements by graphically placing 
constraints within a time domain window. Any number of SIMULINK 
variables including scalars, vectors, and matrices can be declared tunable by 
entering the variable name into the appropriate dialog box. Uncertainty 
bounds can be placed on other variables in the model for robust control design. 
The NCD Blockset makes attaining performance objectives and optimizing 
tunable parameters an intuitive and easy process.

To use the NCD Blockset, you need only include a special block, the NCD block, 
in your SIMULINK diagram. Just connect the block to any signal in the model 
to signify that you want to place some kind of constraint on the signal. The 
NCD Blockset automatically converts time domain constraints into a 
constrained optimization problem and then solves the problem using 
state-of-the-art optimization routines taken from the Optimization Toolbox. 
The constrained optimization problem formulated by the NCD Blockset 
iteratively calls for simulations of the SIMULINK system, compares the 
results of the simulations with the constraint objectives, and uses gradient 
methods to adjust tunable parameters to better meet the objectives. The NCD 
Blockset allows you to introduce uncertainty into plant dynamics, conduct 
Monte Carlo simulations, specify lower and upper limits on tunable variables, 
and alter termination criterion.

You can view the progress of an optimization while the optimization is running, 
and the final results are available in the MATLAB workspace when an 
optimization is complete. Intermediate results are plotted after each 
simulation. You can terminate the optimization before it has completed to 
retrieve the intermediate result or change the design.

Although attempts have been made to provide the most complete and 
up-to-date information in this manual, some information may have changed 
after it was printed. Please check the README file, delivered in the NCD 
Blockset directory (called ncd), for the latest release notes.
1-2



System Requirements
System Requirements
The NCD Blockset has the same system requirements as MATLAB®. (Please 
refer to your Using MATLAB manual for details.)

In addition, the NCD Blockset requires SIMULINK.

Default Window Size
The NCD Blockset windows are sized to accommodate the most common screen 
resolutions available. If you have a monitor with exceptionally high or 
exceptionally low resolution, the default window sizes may be too large or too 
small. In such a case, simply resize the window by dragging the borders.

Installation Instructions
Install the NCD Blockset according to the installation instructions in your 
Using MATLAB. Check the release notes for any additional platform-specific 
information.

Typographical Conventions
The following conventions are used throughout this manual.

Bold Initial Caps Key names, menu names, dialog boxes, and 
items that can be selected from menus; for 
example, Edit menu.

Monospace Commands, function names, and screen dis-
plays; for example, ncddemo.

Italics Book titles, mathematical notation, and for 
introduction of new terms; for example, 
Hot-keys.
1-3
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2 Tutorial
To use the NCD Blockset effectively, you must first be comfortable with 
designing systems using SIMULINK. For more information on SIMULINK, 
consult your Using SIMULINK manual.

The pictures shown in this guide were generated either from a Macintosh IIci 
computer with a 4-bit grayscale monitor or a HIQ Personal Computer (running 
WindowsNT4.0) with a NOKIA Multigraph 445X monitor. If you use a different 
computer, your window borders and buttons may look different.
2-2



Quick Start
Quick Start
If you would like to get started using the NCD Blockset quickly, this section 
describes a short series of actions you can take to get going.

1 Make a model of your (nonlinear) system and controller using SIMULINK. 
Add input signals (e.g., steps, ramps, observed data) to the system for which 
you know what the desired output should look like.

2 Attach NCD blocks to the signals to be constrained. The SIMULINK system 
ncdblock contains the NCD block. To open the system, just type ncdblock 
at the MATLAB prompt.

3 In the MATLAB workspace, initialize the variables you want to tune with “a 
best first guess.”

4 Double-click on the NCD blocks in your system to bring up a constraint 
figure for each constrained output. Press the Help push button on the con-
straint figure for general information on NCD Blockset functionality or 
select Hot-key help... from the Style menu. Double-clicking on an NCD 
block also updates its icon in your SIMULINK system; the icon now displays 
the port number assigned this NCD block. 

5 Stretch, move, open, split, or toggle through constraints by using the Edit 
menu items, the mouse buttons, or the Hot-keys.

6 Open the Optimization Parameters dialog box by selecting Parameters... 
from the Optimization menu. Pick a discretization interval (try between 
one and two percent of the total time axis). Type in the Tunable Variables 
separating them by spaces or commas. For now, the default entries of the 
other dialog box fields should suffice. Press the Help push button on the 
Optimization Parameters dialog box for more information.

7 OPTIONAL: Open the Uncertain Variables dialog box by selecting Uncer-
tainty ... from the Optimization menu.  Uncertain variables should be ini-
2-3



2 Tutorial
tialized to their nominal values in the base workspace. Press the Help push 
button on the Uncertain Variables dialog box for more information.

8 OPTIONAL: Save the constraint data to a file using the Save ... submenu of 
the File menu. Constraints previously saved to a file can be retrieved using 
the Load ... submenu of the File menu.

9 Press the Start push button or select Start from the Optimization menu.
2-4



A Control Design Example
A Control Design Example
The NCD Blockset uses time domain constraint bounds to represent lower and 
upper bounds on response signals. Constraint bounds can be stretched, moved, 
split, or opened in a variety of ways, which are explained here and in Chapter 
6. This section and the next section guide you through two examples of how you 
might perform control design and system identification using the NCD 
Blockset. In this section, we want to control a second order SISO system via 
integral action as shown below.

Specifically, the integral gain (Kint) should ensure that the closed loop system 
meets or exceeds the following performance specifications when we excite the 
system with a unit step input:

• A maximum 10 percent overshoot

• A maximum 10 second rise time

• A maximum 30 second settling time

Because of the actuator limits and system transport delay, standard linear 
control design techniques may not yield reliable results.

NCD Startup
The SIMULINK system ncdtut1 contains the system shown above. You can 
open the system by typing ncdtut1 at the MATLAB prompt. The system was 
2-5



2 Tutorial
created just as any other SIMULINK system; you need not remodel any of your 
present SIMULINK systems to use the NCD Blockset. You need simply to

• Attach an NCD block to all signals you want to constrain. In ncdtut1, we 
attach an NCD block (square block with a step response display) to the plant 
output.

• Add input signals to the system for which you know what the output should 
look like. In ncdtut1, we input a step to the system since we know the desired 
step response characteristics of the system.

• Adjust the simulation Start time and Stop time appropriately. In ncdtut1, 
the step response should settle within 30 seconds, so making the simulation 
run to 50 seconds allows the step to go to completion. Since the NCD optimi-
zation calls for many simulations of the system, you should make the simu-
lation time as short as possible, but long enough to show dynamics of 
interest. You can change the Start time and Stop time through the 
SIMULINK Simulation parameters dialog created by selecting Parame-
ters... from the Simulation menu.

Before continuing, MATLAB variables in the SIMULINK model must be 
initialized. At the MATLAB prompt, type

zeta = 1;
w0 = 1;
Kint = 0.3;

We choose the initial value for Kint after plotting step responses of the 
linearized system for a few values of Kint.

Adjusting Constraints
To open the NCD Blockset constraint window, double-click on the NCD block. 
As shown below, the title of the constraint figure includes the name of the 
SIMULINK system in which the NCD block resides (in this case the system 
ncdtut1). The constraint window contains a response versus time axis, a 
control panel, and default upper and lower constraint bounds. An NCD menu 
2-6



A Control Design Example
bar appears either at the top of the constraint figure or at the top of your screen 
depending upon what type of computer system you have.

The constraint window appears in a default location and default size. You can 
move the constraint window to a more convenient location or make it larger or 
smaller. The thickness of the constraint bounds holds no significance to the 
optimization formulated; it merely provides visual cues defining where 
constraint bounds can be clicked-and-dragged.

The lower and upper constraint bounds define a channel between which the 
signal response should fall. The default constraints effectively define a rise 
time of five seconds and a settling time of 15 seconds. These bounds must 
change to reflect the performance requirements proposed in the beginning of 
this section. To adjust the rise time constraint, position the mouse over the 
vertical line separating the lower bound constraint that ends at five seconds 
and the lower bound constraint that begins at five seconds. Press and hold 
2-7



2 Tutorial
down the (left) mouse button. The arrow should turn to a left/right drag cursor 
as shown below. 

In this mode, you can change the time boundary of two constraints while 
maintaining the angle of both constraints. While still holding the mouse down, 
drag the constraint boundary to the right. Release the mouse after positioning 
the boundary as close as possible to 10 seconds. You may find it helpful to 
enable axis gridding while placing constraints. The Grid check menu under the 
Style menu toggles axes gridding. If you insist on precisely placing constraint 
bound segments, use the Constraint Editor dialog box which appears when 
you double-click over a constraint bound segment. See the “Edit Menu” section 
of Chapter 6 for more information on the Constraint Editor dialog box.

To adjust the overshoot constraint, press and hold the (left) mouse button 
somewhere in the middle of the upper bound constraint bound segment that 
extends from zero to fifteen seconds. Notice that the constraint bound segment 
changes color (meaning it is selected) and that the pointer becomes a up/down 
drag cursor. In this mode, you can drag a constraint vertically within the axes. 
2-8



A Control Design Example
While still holding the mouse button down, drag the constraint until its lower 
boundary is at a height of 1.1 as shown below.

Finally, the settling time constraints require adjustment. Position the mouse 
button just within the left edge of the upper bound constraint extending from 
15 to 50 seconds. Press and hold down the (left) mouse button and notice that 
the constraint becomes selected and that pointer changes to a fleur. In this 
mode, you can stretch the end of the constraint at any angle. While still holding 
the mouse button down, drag the constraint so that the settling time constraint 
begins at 30 seconds. Consider enabling the snapping option if you have 
difficulty releasing the constraint so that it exactly ends up being horizontal. 
The Snap check menu under the Style menu toggles constraint bound 
snapping. With snapping enabled any dragged constraint end snaps to an 
angle that is a multiple of 22.5 degrees. Adjust the lower bound constraint so 
2-9



2 Tutorial
that it too defines a 30 second settling time constraint. The constraint figure 
should now look the one shown below.

Before beginning the optimization, you must tell the NCD Blockset which 
variables are tunable for optimization. Open the Optimization Parameters 
dialog box by selecting Parameters... from the Optimization menu. Simply 
type Kint into the Tunable Variables: editable text field as shown below.

If more than one tunable variable exists, type in the variable names separated 
by spaces. You might also want to change the discretization interval. This 
2-10



A Control Design Example
number relates to the number of constraints generated by the optimization; the 
larger the discretization interval, the fewer constraints generated but the less 
rigorous the optimization. Typical discretization intervals range between one 
and two percent of the total simulation time. For more technical information 
on how the discretization interval affects the optimization problem formulated 
by the NCD Blockset, see the Appendix.

Running the Optimization
After adjusting the constraint bounds in the NCD constraint figure and 
declaring the tunable variables using the Optimization Parameters dialog 
box, you are ready to begin the optimization. You can start an optimization by 
pressing the Start button on the NCD Control panel or by selecting Start from 
the Optimization menu.

When you start the optimization, the NCD Blockset automatically converts the 
constraint bound data and tunable variable information into a constrained 
optimization problem. It then invokes the Optimization Toolbox routine 
constr. The routine adjusts the tunable variables in an attempt to better 
achieve the constraints on system signals defined by the NCD main interface. 
The routine constr solves constrained optimization problems using a 
sequential quadratic programming (SQP) algorithm and quasi-Newton 
gradient search techniques. See the section “Solving the Optimization 
Problem” for more information on how the NCD Blockset uses constr to 
optimize the tunable variables. In short, the optimization problem formulated 
by the NCD Blockset minimizes the maximum constraint violation. The 
number of iterations necessary for the optimization to converge and the final 
values of the tunable variables depend not only on the specific problem but also 
on the computer system. 
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2 Tutorial
For the problem posed above, the output on a PC running WindowNT4.0 is as 
follows:

To inspect the new value of the tunable variable, simply type the variable name 
at the MATLAB prompt:

During optimization, the NCD Blockset first displays information about plant 
uncertainty, a topic discussed in the next subsection. Next the blockset 
displays information regarding the number of constraints per simulation and 
simulations conducted. To determine the total number of constraints to be met, 
multiply the constraints generated per simulation by the number of simulation 
per cost function call. Information regarding the progress of the optimization 
follows. 

The first column of output shows the total number of cost function calls. To 
calculate the total number of simulations conducted, multiply the number of 
function calls by the number of simulations per cost function call. The second 
column (max{g}) shows the maximum (weighted) constraint violation (i.e., the 

Processing uncertainty information.
Uncertainty turned off.
Setting up call to optimization routine.
Start time: 0 Stop time: 50.
There are 205 constraints to be met in each simulation.
There are 1 tunable variables.
There are 1 simulations per cost function call.
Creating simulink model NCDmodel for gradients...Done
f-COUNT     MAX{g}         STEP  Procedures
    3     0.182918            1   
    6    0.0404898            1   Hessian modified twice 
    9  -0.00560194            1   Hessian modified twice 
   12  -0.00561533            1   Hessian modified twice 
   13  -0.00567585            1   Hessian modified twice 
Optimization Converged Successfully
Active Constraints:
   124
   165

» Kint

Kint =

    0.1867
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A Control Design Example
cost function). This number should decrease during the optimization. When 
max{g} becomes negative, all constraints have been met. In the case above, a 
negative max{g} shows that all constraints were met after the ninth function 
call and the optimization then proceeded to overachieve. The third column 
(STEP) displays the step size used by the line search algorithm. The last 
column shows special messages related to the quadratic programming 
subproblem. If the termination criteria are met, the optimization ends with the 
message Optimization Converged Successfully. Note that this does not 
imply that all constraints have been met. 

Finally, the optimization displays an encoded list of the active constraints (i.e., 
which constraints prohibit further decrease in the cost function). For detailed 
information on the optimization algorithm, see the Appendix. The command 
window display can be disabled by unchecking the Display optimization 
information check box on the Optimization Parameters dialog box.

When the NCD Blockset begins the optimization, it plots the initial response in 
white. To view the (initial) response without beginning the optimization, select 
Initial response from the Options menu. Viewing the initial response may 
help you define better constraint bounds. At each iteration the optimization 
plots an intermediate response. You can terminate the optimization at any 
time and recover intermediate results by pressing the Stop push button or 
selecting Stop from the Optimization menu.

Because of different numerical precision, the results of the optimization may 
differ slightly across different platforms.

Adding Uncertainty
In your particular problem, a precise plant model may not be known. Instead 
you know what the nominal plant should be and have some idea of the 
uncertainty inherent in various components of the plant. For example, assume 
that the plant parameter zeta varies 5% about its nominal value and w0 varies 
between 0.7 and 1.45.

The NCD Blockset allows you to design controllers to meet performance 
objectives in the face of this uncertainty. Just open the Uncertain Variables 
dialog box by selecting Uncertainty... from the Optimization menu and type 
in the names of the uncertain variables and their ranges as shown on the next 
page. The NCD Blockset automatically incorporates this uncertainty into the 
optimization.
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2 Tutorial
The Uncertain Variables: editable text field expects you to supply a list of 
variable names. You can separate the variable names by spaces or commas. 
The optional lower and upper bound editable text fields accept variable names, 
numbers, and expressions. Expressions can contain, in addition to numbers, 
variables available in the MATLAB base workspace.

Notice that by default the NCD Blockset only constrains the nominal plant 
during optimization. To constrain the lower or upper bound plant during 
optimization, check the appropriate check box. A further option allows you to 
constrain randomly generated plants between the upper and lower bound 
plants. Simply enter the number of random plants you would like to constrain 
into the Number of Monte Carlo simulations: editable text field and check the 
Constrain Monte Carlo simulations check box. A status line tells you how 
many simulations are performed during each call to the cost function. In the 
figure above, notice that we constrain only the upper and lower bound 
simulations for a total of two simulations per cost function call.

Although constraining more plants results in more robust control design, it 
adds to the optimization time. We recommend that you constrain as few plants 
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A Control Design Example
as possible during optimization and use the Monte Carlo option mostly for 
analysis purposes. For example, constrain only the upper and lower bound 
plants during optimization. Once the optimization terminates, simply inspect 
the system response for a number of random plants by selecting Initial 
response... from the Options menu after constraining a number of Monte 
Carlo simulations using the Uncertain Variables dialog box. If this analysis 
shows the design to be unsatisfactory, then consider optimizing with the Monte 
Carlo option enabled.

With the Uncertain Variables dialog box filled in as above, start the 
optimization again. Notice that now the NCD Blockset draws two initial plots 
and updates two others. The plots show the output of the upper and lower 
bound plants. In general, the NCD Blockset draws a plot for each plant 
constrained. Note too that the output to the command window now shows each 
cost function call conducting two simulations.

If you want to erase the plots on an NCD constraint figure, select Delete plots 
from the Edit menu.
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A System Identification Problem
The next example, ncdtut2, shows one technique for using the NCD Blockset 
to perform closed loop system identification. Specifically, we want to estimate 
the mass and length of the pendulum in a variation of the popular inverted 
pendulum problem. The physical system contains a cylindrical metal rod 
attached to a motor driven cart to allow for rotation about only one axis. We 
mount the cart on a linear track to create a stabilizable problem as shown 
below.

The rod initially has a mass of 0.21kg and a length of 0.61m and is stabilized 
via LQR control. The Appendix explains both the equations of motion for the 
system and the design of the LQR controller.

With the LQR controller stabilizing the system, we stick a clay ball to the top 
of the rod, thus changing the effective pendulum mass and length. Now we 
want to estimate this new pendulum mass and length.

NCD Startup
The SIMULINK system ncdtut2 contains a block diagram representation of 
the experiment described above. You can open the system by typing ncdtut2 at 
the MATLAB prompt.
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A System Identification Problem
Notice that in addition to the inherent nonlinearities of the system equations, 
limits on the voltage applied to the motor result in an actuation saturation 
constraint of one Newton. Notice that the system contains two NCD blocks as 
we use both pendulum angle and cart position signals to perform identification. 
The basic approach to performing system identification using the NCD 
Blockset involves constraining the error signals. To form error signals, use the 
From Workspace block to import observed data into your system and then 
subtract the simulated signal.

Before continuing, you must define some system parameters and load the 
observed data. At the MATLAB command line, type

penddata % Loads T, U, yHat, ThetaHat, g, and Mc
l = 0.61/2; % Distance to center of mass of pendulum (m)

% i.e., one–half length of pendulum
m = 0.21; % Mass of pendulum (kg)

In the real world system, sensors measure only cart position and pendulum 
angle and we calculate the velocities using finite difference estimators. Here 
we ignore such considerations and assume full state feedback. Also in the real 
2-17



2 Tutorial
world, the measured and input signals contain noise. Here we simply 
generated the observed output signals (yHat and ThetaHat) by simulating the 
system at the solution point (m=0.3 and l=0.32). We did not add noise.

We apply a modified chirp signal, U, to the system. We find such signals useful 
in system ID applications because they contain contributions from a specified 
frequency range [1]. The signal U possesses (nearly) uniform frequency 
components between 1Hz and 10Hz. A time response plot and power spectral 
analysis of the signal appear below.

We use gain blocks to magnify and normalize the error signals before passing 
them to the NCD block. Note that the position error is magnified Gy = 200 
times, whereas the angle error is magnified by a factor Gt = 100. Alternatively, 
you could have weighted the signals using the Constraint Editor dialog box as 
described in the “Edit Menu” section of Chapter 6. We suggest the convention 
of using gain blocks to normalize signals (i.e., weighting all constraint 
segments of an output) and constraint segment weighting for weighting one 
constraint segment of the same output relative to another.
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A System Identification Problem
Adjusting Constraints
With the error signals as defined above, we simply want to drive them as close 
to zero as possible. Thus we intend to design constraint bars that merely 
bracket zero. Since the errors signals have been magnified via the gain blocks, 
we constrain both (magnified) error responses to within ±1 of zero. You might 
define these constraints in a number of ways:

Method 1: Click and drag constraints: First open the NCD constraint figures 
as in the previous section by double-clicking on the NCD blocks. Then simply 
click and drag constraint bound segments around as in the previous section.

Method 2: Use the Constraint Editor dialog box: To use the Constraint 
Editor, first open the NCD constraint figures as in the previous section by 
double-clicking on the NCD blocks. Then open the Constraint Editor dialog 
box by clicking the right mouse button on a constraint bound segment. If you 
opened the editor on a lower bound segment, enter[0 -1 5 -1] into the 
Position editor [x1 y1 x2 y2]: editable text field. Otherwise, you have opened 
the editor on an upped bound constraint, therefore, type [0 1 5 1] into the 
editable text field.

Since the lower constraint bounds are now outside the default y-axis range, 
open the Y-axis Range dialog box and change the Y-axes limits to [-1.5 1.5] 
on both the constraint figures. You can open the Y-axes Range dialog box by 
selecting Y-Axis... from the Options menu. For more information on the Y-axis 
Range dialog box, see the “Options Menu” section of Chapter 6.

When you open a constraint figure by double clicking on an NCD block, the 
global variable ncdStruct is created and initialized as a structure with various 
fields. The lower bound information is stored in ncdStruct.CnstrLB, the upper 
bounds in ncdStruct. CnstrUB, and the axes range information saved in 
ncdStruct.RngLmts. The data you input into the Constraint Editor and the 
Y-axes Range dialog boxes gets saved into the these fields of ncdStruct, and 
you can see the format in which the lower bound information is stored by typing
ncdStruct.CnstrLB at the MATLAB prompt. See the Appendix for more 
information regarding these variables and other data fields of ncdStruct. 

Though the ncdStruct is available to you in the workspace, we strongly urge 
you not to modify it directly. We mention this at this point so that you aware 
that the NCD Blockset does create this global variable in your MATLAB 
workspace, and typing clear or clear global during an NCD session would 
require closing down all constraint windows and beginning the session anew.
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2 Tutorial
Before starting the optimization, you must tell the NCD Blockset which 
parameters are tunable for optimization. Open the Optimization Parameters 
dialog box by selecting Parameters... from the Optimization menu of either 
constraint figure. Input changes to the dialog box’s editable text fields to make 
the dialog box look like the one below.
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A System Identification Problem
Running the Optimization
After adjusting the constraints and defining tunable variables, start the 
optimization by pressing the Start button on the NCD Control panel or by 
selecting Start from the Optimization menu. For the problem posed above, a 
PC running WindowsNT4.0 outputs:

Because of different numerical precision, the results of the optimization may 
differ slightly across different platforms. The constraint figures on the next 
page show the initial and final response plots for the cart position and 
pendulum angle error signals.

Processing uncertainty information.
Uncertainty turned off.
Setting up call to optimization routine.
Start time: 0  Stop time: 5.
There are 404 constraints to be met in each simulation.
There are 2 tunable variables.
There are 1 simulations per cost function call.
Creating simulink model NCDmodel for gradients...Done
f-COUNT     MAX{g}         STEP  Procedures
    5     0.466256            1   
   10    -0.421419            1   Hessian modified 
   15    -0.392145            1   
   20    -0.477709            1   
   25    -0.478421            1   Hessian modified twice 
   30    -0.473284            1   Hessian modified twice 
   35    -0.473988            1   Hessian modified twice 
   44    -0.473985       0.0625   Hessian modified twice 
   51    -0.474014         0.25   Hessian modified 
   60    -0.474371       0.0625   Hessian modified twice 
   93    -0.474371   -3.73e-009   Hessian modified twice 
  126    -0.474371   -3.73e-009   Hessian modified twice 
  159    -0.474371   -3.73e-009   Hessian modified twice 
  164    -0.473248            1   Hessian modified twice 
  165    -0.477089            1   Hessian modified twice 
Optimization Converged Successfully
Active Constraints:
    54
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A System Identification Problem
You may want to investigate how incorporating noise into the observed data 
affects the optimization. To do this simply

• Reinitialize the tunable variables to their initial values: 
m = 0.21;
l = 0.61/2;

• Add random noise to the observed data vectors:
yHat = yHat + 0.001*rand(size(yHat));
ThetaHat = Thetahat + 0.001*rand(size(ThetaHat));

• Restart the optimization.

The optimization still converges to the known solution, but it takes more 
iterations to do so.

Due to the design of the experiment, you know that the solution mass and 
length are larger than the initial mass and length (re: a clay ball is stuck to the 
end of the pendulum). Thus, you can constrain the lower bounds of the tunable 
parameters using the Tunable Parameters dialog box. In general, add such 
constraints whenever possible since the added information allows the 
optimization to make better decisions about how to search the parameter 
space.
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Solving the Optimization Problem
The NCD Blockset transforms the constraints and simulated system output 
into an optimization problem of the form

where the boldface characters denote vectors. Variable x is a vectorization of 
the tunable variables while xl and xu are vectorizations of the lower and upper 
bounds on the tunable variables. The vector g(x) is a vectorization of the 
constraint bound error and w is a vectorization of weightings on the 
constraints. The scalar γ imposes an element of slackness into the problem, 
which otherwise imposes that the goals be rigidly met (See the Appendix for 
more information).

Basically, the NCD Blockset attempts to minimize the maximum (weighted) 
constraint error. The NCD Blockset generates constraint errors at equally 
spaced time points (with spacing given by the Discretization interval defined 
in the Tunable Parameters dialog box) beginning at the simulation start time 
and ending at the simulation stop time. For upper bound constraints, we define 
the constraint error as the difference between the constraint boundary and the 
simulated output. For lower bound constraints, we define the constraint error 
as the difference between the simulated output and the constraint boundary.

This type of optimization problem is solved in the Optimization Toolbox routine 
constr. The routine uses a Sequential Quadratic Programming (SQP) method 
which solves a Quadratic Programming (QP) problem at each iteration. At each 
iteration, the routine updates an estimate of the Hessian of the Lagrangian. 
The line search is performed using a merit function. The routine uses an active 
set strategy for solving the QP subproblem.

For more information on the algorithm implemented by constr, see the 
Appendix or the Optimization Toolbox User’s Guide.

min γ
x γ, s.t.  

g x〈 〉 wγ– 0≤
xl x xu≤ ≤
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NCD Blockset Command Line Interaction
You can conduct an NCD Blockset session from the command line without 
using NCD constraint figures or even the NCD block. We expect, however, that 
you will prefer the convenience and efficiency of the constraint figure. Without 
the constraint figure, constraint bounds are difficult to visualize. Also during 
optimization, you can watch the cost function decrease, but you cannot observe 
the evolution of the system response. Thus you cannot tell which constraints 
prohibit further decrease in the cost function.

Before beginning the optimization, you must declare ncdStruct as global and 
initialize the fields of this structure. See the Appendix for details about the 
fields in ncdStruct. You can use the script file ncdglob.m to define ncdStruct 
as global and set up its fields. If you have already saved a set of constraints (by 
selecting Save... from the NCD constraint figure File menu), you can declare 
and define the necessary global variables by typing

ncdglob; load myfile

at the MATLAB prompt, where myfile is the file to which you saved your 
constraints.

Once you declare and define the necessary global variables, you can start the 
optimization by typing

nlinopt('sfunc')

at the MATLAB prompt where sfunc is the name of your SIMULINK system. 
If ncdStruct.OptmOptns(1) = 1, the NCD Blockset displays optimization 
information in the command window. The rest of this section describes which 
fields in ncdStruct need to be defined in order to conduct NCD sessions from 
the MATLAB command line.

The NCD block is a masked outport block, which calls the constraint figure 
creation routine optblock when you double-click on it. Since nlinopt directly 
looks for these masked outport blocks in your model, the constraint figures 
need not be open to start the optimization routine. However, you must 
initialize the fields in ncdStruct for nlinopt to work. Specifically, you must 
initialize the following fields: ncdStruct.CnstrLB, 
ncdStruct.CnstrUB,ncdStruct.TvarStr, ncdStruct.Tdelta, 
ncdStruct.CostFlag,ncdStruct.GradFlag,
ncdStruct.RngLmts, and ncdStruct.SysName. Consult the Appendix for more 
information about these variables, and see the demo initialization scripts 
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ncd1init, ncd2init, ncd3init, and ncd4init for more examples on how to 
define these variables. If you want to perform an optimization with uncertainty 
in your plant dynamics, you must further initialize and the following variables: 
ncdStruct.UvarStr, ncdStruct.UvlbStr, ncdStruct.UvubStr, 
ncdStruct.NumMC, and ncdStruct.PlntON. Again, the Appendix and demo 
initialization files can help you understand how to use and define these 
variables.

NCD and the SIMULINK Accelerator
The NCD Blockset works automatically and seamlessly with the SIMULINK 
Accelerator. If you have the SIMULINK Accelerator, simply check Accelerate 
on your SIMULINK system Simulation menu and the NCD Blockset will run 
with the C code generated by the SIMULINK Accelerator. Because the 
majority of NCD Blockset optimization time is spent conducting simulations, 
using the SIMULINK Accelerator could greatly decrease the amount of time it 
takes to perform an optimization. To get the most speed from the SIMULINK 
Accelerator, you should close all Scope blocks and either remove M-file function 
blocks or replace them with Fcn blocks. 

Printing a NCD Blockset Constraint Figure
Select Print from the File menu on the NCD Blockset constraint figures to 
send hardcopies of figures to the printer. The Print menu item brings up a 
dialog box and lets you set the print options, before sending the figure to the 
printer. Consult your Using MATLAB manual for more information.

Since the NCD Blockset control panel and menu bar are separate platform 
dependent window objects, they do not appear in the printed hardcopy. 
Constraint bars do appear in the printed hardcopy. If you want the NCD 
control panel and menu bar to appear in your hardcopy, use the screen capture 
technique of your choice.

References
[1] Weizheng Wang, Modeling Scheme for Vehicle Longitudinal Control, CDC, 
Tuscon, 1992, pp. 549-54.
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3 Problem Formulation
The NCD Blockset can aid in the design and identification of complex control 
systems (including gain scheduled and multimode control and repeated 
parameter problems). Such problems are found in everyday engineering 
practice but little theory addresses them.

This chapter provides brief descriptions of how various problems not discussed 
in Chapters 2 and 4 can be formulated and solved using the NCD Blockset.
3-2



Actuation Limits vs State Constraints (Physical vs Design Constraints)
Actuation Limits vs State Constraints 
(Physical vs Design Constraints)

To incorporate actuator limits and other physical constraints using the NCD 
Blockset, simply use SIMULINK’s Saturation block. You do not need to attach 
an NCD block and define NCD constraints for such signals since the physics of 
the system guarantees that the signal cannot exceed the limits. For example, 
consider the pendulum examples of Chapters 2 and 4 and notice the Saturation 
block after the Klqr gain block. This Saturation block models the actuator 
limits of the controller. The power electronics of the controller limit the voltage 
supplied to the motor driving the cart. This voltage limit in turn limits the 
amount of force applied by the cart to ±1 Newton.

On the other hand, to incorporate design constraints, use the NCD block to 
constrain a state or signal. In the inverted pendulum example, although the 
pendulum angle physically can exceed ±0.2 radians, we require that an 
acceptable controller does not allow the pendulum to exceed such a constraint.

Minimizing Integrated Positive Signals (Control Energy)
Again, such signals can be considered design constraints. If the signal does not 
exist naturally in the system, you can model it using the Abs and Integrator 
blocks in SIMULINK. Even though we do not typically view such constraints 
as point-by-point constraints (i.e., intermediate time values of the signal are of 
no interest), the design constraint analogy still holds because over time, the 
integral increases. Thus you know that the signal can never have a value at its 
final time smaller than at any intermediate time. Also, although many 
problems concerning the minimization of integrated signals extend to an 
infinite time horizon (the NCD Blockset is practical only over shorter time 
horizons), the signals typically begin converging to their infinite time horizon 
limit in a finite time (over which the NCD Blockset can practically be applied).

Before using the NCD Blockset to minimize integrated signals, consider 
whether such a design goal really makes sense to you. Much modern control 
theory considers the minimization of integrated positive signals, partly 
because such signals possess some relation to the real world and partly because 
such problems possess well known closed-form solutions. For something such 
as simple motor actuation, you may instead want to incorporate actuator 
saturation using a Saturation or Limited Integrator block. On the other hand, 
for something such as jet engine control, minimizing total fuel consumption (an 
integrated positive signal) may be necessary.
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Noise Inputs
No noise should be included in the SIMULINK model during optimization. 
Including noise in the system while optimizing effectively introduces 
inconsistency into the problem formulation and may cause the optimization to 
converge more slowly or even fail to converge altogether. Modern control theory 
techniques often define noise terms in their problem formulation as 
approximations to plant, actuator, or sensor uncertainty. In other cases, 
modern control theory effectively uses the noise covariance matrices as 
tweakable design handles. Using the NCD Blockset, you can design controllers 
while directly incorporating uncertainty into plant, actuator, or sensor 
dynamics by using the Uncertain Variables dialog box. Instead of framing 
your control design in terms of minimizing various norms of weighted transfer 
functions, and tuning your response by tweaking the weights, the NCD 
Blockset utilizes the time domain constraint bound paradigm.

Of course, noisy measurements do exist in the real world, and you must take 
such noise into consideration when you do your design. In the general case, you 
should simply inspect the system performance with noise added after 
optimizing. If you must include noise in your system during optimization, 
follow these suggestions. 

• For continuous systems, use the Band Limited White Noise block (found in 
the SIMULINK sources library), a fixed time step integration (set the min-
imum and maximum time step to be equal), and a constant seed for the noise. 

• For discrete systems, use the White Noise block (found in the SIMULINK 
Sources library) with a constant seed for the noise.

Increasing the noise in a system often forces you to design more conservative 
control to maintain system stability. If including noise in your system produces 
unacceptable instability, consider changing your NCD constraint bounds to 
allow less overshoot and longer rise times and settling times. If this results in 
unacceptable system performance, consider options that decrease sensor noise.
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Tracking
The “Control Design Example” of Chapter 2 as well as the demos of Chapter 4 
all contain tracking constraints. The general tracking block diagram is shown 
below.

Notice the plant output (y) subtracts from the commanded input (r). The 
integrator ensures zero steady state error even in the presence of plant or 
controller variation. To solve tracking problems, we suggest that you input a 
step into the appropriate input of the system and constrain the appropriate 
output via shaping the step response.

Disturbance Rejection
The “Inverted Pendulum” case study of Chapter 4 contains disturbance 
rejection constraints. Basically, a signal to be rejected (e.g., a step, impulse, or 
chirp) should be input to the system using a From Workspace or From File 
block. Then the output should be constrained by bounds that bracket zero.

System Identification
The “Pendulum” example of Chapter 2 contains a system ID problem 
formulation and solution. Using the From Workspace or From File block, 
measured inputs should be input to the system. By subtracting the simulated 
outputs from the observed outputs, the system ID problem can be reformulated 
as a disturbance rejection problem. In some cases, you may find it more useful 
to pass the difference signal through a low pass filter, before applying the 
constraints.

Model Following
Solve model following problems (problems where you design a controller to 
follow a prespecified trajectory given certain inputs) by using the NCD 
Blockset in the same way as in system identification problems. Subtract the 

PC1/s yr
+

_
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3 Problem Formulation
simulated outputs from the desired trajectories and constrain these signals as 
you would a system identification or disturbance rejection problem.

Adaptive Control
Design adaptive controllers using the NCD Blockset as you would any other 
controller. You can tune forgetting factors and sampling times, but not model 
order. Choosing model order is an integer optimization problem that the NCD 
Blockset (which calls the routine constr) cannot solve.

MIMO Systems
To design MIMO controllers or perform MIMO system ID, attach an NCD block 
to all signals to be constrained and design constraints for each signal over 
independent time intervals. The “MIMO PI Controller” example of Chapter 4 
shows how to design constraints for a two-input, two-output tracking problem 
with cross-channel decoupling.

Multimode Control
Multimode control concerns designing one or more controllers for a plant as it 
transitions over a wide range of dynamic behavior. Typically you make a linear 
approximation of the plant at a number of operating points (plant conditions) 
and then generate a controller for each operating point. The plant models at the 
operating points often have different dynamic order and the controllers for 
each operating point generally have different structure and/or order. 
Multimode control also considers the design of the logic (supervisory control), 
which switches between the various controllers designed for each operating 
point. To model a multimode controller in SIMULINK, use switch blocks to 
toggle among the various plant and controller models according to the 
operating conditions of the plant. Use logic blocks (from the extrlog directory) to 
create the supervisory control that manages the switches.

The NCD Blockset allows you to design multimode controllers and simplifies 
the process in two ways: by providing a means to tune the switching logic and 
by decreasing the number of controllers you need to generate. As with other 
problems, you can design your controller using the actual nonlinear plant 
model instead of a number of operating point linear approximations. Not only 
does this reduce the amount of verification that you must perform once the 
optimization produces results, but it also allows you to tune the switching logic 
parameters. In the case of multimode control, the ability to design nonlinear 
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controllers may not only create the possibility for improved performance over 
linear control, but may decrease the number of controller you must generate 
since a single nonlinear controller may be applicable to more than one 
operating point.

Gain Scheduling
Gain scheduling problems may be considered a subset of multimode control 
problems where the controller order and structure remain consistent over all 
operating points.

Repeated Parameter Problems
Repeated parameter problems involve designing controllers (performing 
system identification) where some of the control parameters to be designed 
(system parameters to be identified) appear more than once in the control 
structure (system model). They are notoriously difficult to solve unless they can 
somehow be transformed/reduced into a problem without repeated parameters. 
In the figure below, the tunable parameter K appears twice in the control 
structure.

The NCD Blockset can solve repeated parameter problems without any special 
treatment. Simply include the repeated parameter variable name as many 
times as needed in the SIMULINK system and declare it tunable using the 
Tunable Parameters dialog box.

 You only have to type the variable name once in the Tunable Parameters 
dialog box; not as many times as the parameter appears in the SIMULINK 
system.

P yr
+

_

K__________
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Simultaneous Stabilization
Simultaneous stabilization requirements (i.e., designing a single controller to 
stabilize multiple plants) may be considered a subset of the repeated 
parameter problem. In the figure below, the same controller C must stabilize 
both plants (P1 and P2).

Controller Pole (Zero) Placement
You can use the NCD Blockset to design controllers with constraints on the 
controller’s pole or zero locations. Simply use the Zero-pole-gain block or 
Transfer Fcn block from the Linear library of SIMULINK and declare the poles 
tunable as you would any other tunable parameter by using the Tunable 
Parameters dialog box. Then constrain the poles (zeros) within the complex 
plane by enforcing lower and upper bounds on the tunable pole (zero) 
parameters.

Complex pole (zero) pairs can be constrained as two tunable variables in two 
different ways: (s+a+bj)(s+a–bj) or (s^2+as+b). 

The first method produces a repeated parameter problem while the second does 
not. The first method allows for more obvious constraints to be placed on the 
real part of controller poles, while the second method allows for more obvious 
constraints to be placed on controller damping.

P2C y2
+

_

P1C y1

r

+

_
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Strong Stabilization
Strong stabilization requirements (i.e., designing a stable controller to stabilize 
a system) may be considered a subset of the pole placement problem. 
Specifically, all poles of the controller are constrained to lie in the left half 
plane.

For real poles (e.g., s+a), simply enforce a lower bound of zero on the tunable 
pole (a) using the Lower Bound: editable text field in the Tunable Variables 
dialog box. Complex pole pairs defined as either (s+a+bj)(s+a–bj) or (s^2+as+b) 
should include the lower bound a,b>0. 
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4 Case Studies
To provide extended examples of use, this chapter presents four benchmark 
problems, which are contained separately in the SIMULINK systems 
ncddemo1, ncddemo2, ncddemo3, and ncddemo4. All four are contained in the 
SIMULINK system ncddemo. The problems increase in sophistication from 
ncddemo1 to ncddemo4.
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Case Study 1: PID Controller
Case Study 1: PID Controller
In the first control design problem, ncddemo1, we model the nominal plant as 
the third-order SISO transfer function.

where a2 = 43 and a1 = 3 nominally with rate limit (±0.8) and saturation (±2) 
nonlinearities. Additionally, because of design tolerances, actual plant 
dynamics exhibit significant variation from the nominal. Specifically, the 
denominator coefficient a2 varies between 40 and 50 and the coefficient a1 
varies between one-half and 1.5 time its nominal value of 3.

Problem Definition
We want to design a PID controller for the system so that the closed loop 
system meets the following tracking specifications:

• Maximum overshoot of 20%

• Maximum 10 seconds rise time

• Maximum 30 seconds settling time

Further, we want the closed loop response to be robust to the uncertainty in the 
plant dynamics.

G s〈 〉 1.5

50s3 a2s2 a1s 1+ + +
----------------------------------------------------------=
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Problem Setup
The SIMULINK system ncddemo1 contains the plant and control structure as 
shown below. To open the system, type ncddemo1 at the MATLAB prompt or 
double-click on the NCD Demo 1 block in the SIMULINK system ncddemo. 
Notice the rate and saturation nonlinearities included in the plant model. A 
step input drives the system. The NCD block attaches to the plant output since 
it is the signal to be constrained. Inspecting the System’s Parameters dialog 
box shows that each simulation lasts 100 seconds.

Double-click on the block ncd1init to initialize the tunable and uncertain 
variables. The uncertain variables, a2 and a1, are initialized to their nominal 
values of 40 and 3 respectively. The tunable parameters, Kp, Ki, and Kd 
initialize to 0.63, 0.0504, and 1.9688 respectively. These values result from 
using the Ziegler-Nichols method for tuning PID controllers [1, Ch.3]. The 
Ziegler-Nichols method for tuning PID controllers can be summarized as 
follows:

• Set the integral and derivative gains to zero and increase the proportional 
gain until the system just becomes unstable.

• Define this gain to be Ku and measure the period of oscillation, Pu.

• Set Kp = 3*Ku/5, Ki = 6*Ku/(5*Pu), and Kd = 3*Ku*Pu/40.

Double-clicking on the ncd1init block also defines the time domain response 
constraints for this demonstration. Double-click on the NCD block to open the 
NCD Blockset constraint figure and display the constraints. The lower and 
upper constraint bounds effectively define overshoot, rise time, and settling 
time constraints.

Problem Solution
Before starting the optimization, open the Optimization Parameters dialog 
box by selecting Parameters... from the Optimization menu and notice how 
the Tunable Variables are defined. Also open the Uncertain Variables dialog 
box by selecting Uncertainty... from the Optimization menu. Notice how the 
uncertainty in the parameters a2 and a1 is defined and also note that the 
optimization constrains only the nominal plant.

Press the Start button, select Start from the Optimization menu, or hold down 
the accelerator key and press t to start the optimization.  Watch the response 
evolve and improve during the optimization. The optimization time, cost 
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Case Study 1: PID Controller
function evolution, and final values for the tunable variables may differ for 
different computers. However, the optimization should produce a controller 
that meets all the constraints.

Now return to the Uncertain Variables dialog box and constrain the upper 
and lower bound plants. Press Start to begin optimizing with uncertainty. You 
may find that all the constraints cannot now be met, but the displayed output 
shows a maximum constraint violation of less than 0.01. Considering the 
degree of uncertainty in the plant dynamics, such a result is still impressive.

You can experiment if you want, moving the constraint bounds in an attempt 
to achieve even better system performance. For example, decrease the rise time 
or lower the overshoot constraints.
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Case Study 2: LQR with Feedforward Controller
The second problem, ncddemo2, requires the Control System Toolbox as it is an 
extension of problems found in the SIMULINK demo file lqgdemos. We model 
the SISO plant as a fourth-order linear state-space system augmented with 
saturation (±5) and rate limit (±10) nonlinearities. The equations

define the nominal plant. For illustration purposes, we allow the plant A 
matrix to vary between one half and twice its nominal value.

Problem Definition
Using LQG/LTR techniques, we design a Kalman state estimator and regulator 
gain (K) for the linear system. Next we add an integrator to guarantee zero 
steady state error. To achieve increased response time, we add a feedforward 
gain (FF). In the SIMULINK demo system lqgopt, the control parameters K 
and FF are tuned via an adhoc least squares method. We tune these parameters 
here using the NCD Blockset.

Specifically, we want to tune the control parameters K and FF such that the 
closed loop system meets the following tracking specifications:

• Maximum overshoot of 20%

• Maximum one second rise time

• Maximum three second settling time

Further, we want the closed loop response to be robust to the uncertainty in the 
plant dynamics.

Problem Setup
The SIMULINK system ncddemo2 contains the plant and control structure 
shown below. To open the system, type ncddemo2 at the MATLAB prompt or 
double-click on the NCD Demo 2 block in the SIMULINK system ncddemo. 
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Case Study 2: LQR with Feedforward Controller
Notice the rate limit (±10) and saturation (±5) nonlinearities included in the 
plant model. Using the From Workspace block, we input a step that transitions 
from zero to one at one second. The NCD block attaches to the plant output 
since it is the signal to be constrained. Inspecting the System’s Parameters 
dialog box shows that each simulation lasts 10 seconds.

Double-click on the block ncd2init to initialize the tunable and uncertain 
variables. Double-clicking on the ncd2init block also defines the time domain 
response constraints for this demonstration. Double-click on the NCD block to 
open the NCD Blockset constraint figure and display the constraints. The 
constraint bounds effectively define overshoot, rise time, and settling time 
constraints.

As described above, we generate an initial controller design via LQG/LTR 
methods using the linearized plant.  For the present nonlinear control 
optimization, only the feedforward gain FF and the regulator matrix gain K are 
tunable.

Problem Solution
Before starting the optimization, open the Optimization Parameters dialog 
box by selecting Parameters ... from the Optimization menu and notice how 
the Optimization Parameters are defined. Also open the Uncertain 
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4 Case Studies
Variables dialog box by selecting Uncertainty ... from the Optimization 
menu. Notice how the uncertainty in the plant A matrix is defined and also 
note that the optimization only constrains the nominal plant.

Press the Start button, select Start from the Optimization menu, or hold down 
the accelerator key and press t to start the optimization.  Watch the response 
evolve and improve during the optimization. The optimization time, cost 
function evolution, and final values for the tunable variables may differ for 
different computers. However, the optimization should produce a controller 
that meets all the constraints.

Now return to the Uncertain Variables dialog box and constrain the upper 
and lower bound plants. Press Start to begin optimizing with uncertainty. You 
may find that all the constraints cannot now be met, but the displayed output 
shows a maximum constraint violation of less than 0.01. Considering the 
degree of uncertainty in the plant dynamics, such a result is still impressive

You can experiment if you want, moving the constraint bounds in an attempt 
to achieve even better system performance. For example, decrease the rise time 
or lower the overshoot constraints.
4-8



Case Study 3: MIMO PI Controller
Case Study 3: MIMO PI Controller
The third control design problem, ncddemo3, considers designing a MIMO 
centralized PI controller for the LV100 gas turbine engine. We model the plant 
as a two-input, two-output, five-state minimum phase system. The inputs are 
the fuel flow and variable area turbine nozzle. The outputs are the gas 
generator spool speed and temperature. The five states are the gas generator 
spool speed, the power output, temperature, fuel flow actuator level, and 
variable area turbine nozzle actuator level. A state-space model for the system 
is given by

So that comparison can be made to previous results, no nonlinearities are 
modeled in this problem. As mentioned in [2], saturation nonlinearities do exist 
in the system in the form of limited actuator effort and maximum 
temperatures. These nonlinearities could be included in NCD Blockset problem 
formulation as in previous examples. Also, for the sake of demonstration, we 
exaggerate plant uncertainty. Specifically, we allow the plant A matrix to vary 
between one-half and twice its nominal value.
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4 Case Studies
Problem Definition
We want to design a centralized 2-by-2 PI controller for the plant so that the 
closed loop system meets the following tracking specifications:

• Maximum one second rise time

• Zero overshoot in the first channel and less than 10% in the second

• Maximum three second settling time

• Less than 5% cross channel coupling

Further, we want the closed loop response to be robust to the uncertainty in the 
plant dynamics.

Problem Setup
The SIMULINK system ncddemo3 contains the plant and control structure. To 
open the system, type ncddemo3 at the MATLAB prompt or double-click on the 
ncddemo3 block in the SIMULINK system ncddemo. We model the PI controller 
as a state-space system with a zero A matrix and identity B matrix. The C and 
D matrices are the tunable variables Ki and Kp respectively for a total of eight 
tunable variables. Initial values for the controller are generated as in [2].

Double-click on the ncd3init block to load the plant data, signal inputs, initial 
values for the tunable variables, and previous controller solutions obtained via 
other methods. Double-clicking on the ncd3init block also defines the time 
domain response constraints for this demonstration. Notice there are now two 
NCD Optimization blocks that can be displayed simultaneously.

The approach we suggest for MIMO controller design for tracking problems 
involves sequentially stepping the commanded inputs. When the first channel 
steps, the first output should track the step and the other channels should 
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Case Study 3: MIMO PI Controller
reject the signal. When the second channel steps, the second output should 
track the step and the other channels should reject the signal, etc. Notice we 
have used the From Workspace block to inject such sequentially stepping 
signals to the system. 

Double-click on the NCD blocks to open the NCD Blockset constraint figures 
and display the constraints. Notice the constraints for the first output initially 
define step response bounds as in previous examples (i.e., the first channel is 
stepped first). Meanwhile the second ouput’s constraint bounds merely 
constrain the signal to stay within ±0.05 of zero. Similarly, when the second 
channel is stepped, the constraints for the first output merely constrain that 
signal to within ±0.05 of zero while the second output’s constraint bounds 
appear in the familiar step response configuration.

Problem Solution
Before starting the optimization, open the Optimization Parameters dialog 
box by selecting Parameters ... from the Optimization menu and notice how 
the Optimization Parameters are defined. Also open the Uncertain 
Variables dialog box by selecting Uncertainty ... from the Optimization 
menu. Notice how the uncertainty in the plant A matrix is defined and also 
note that the optimization constrains only the nominal plant.

Press the Start button, select Start from the Optimization menu, or hold down 
the accelerator key and press t to start the optimization.  Watch the responses 
evolve and improve during the optimization. The optimization time, cost 
function evolution, and final values for the tunable variables may be different 
for different computers. However, the optimization should produce a controller 
that meets all the constraints.

Now return to the Uncertain Variables dialog box and constrain the upper 
and lower bound plants. Press Start to begin optimizing with uncertainty. You 
may find that all the constraints cannot now be met, but the displayed output 
shows a maximum constraint violation of less than 0.01. Considering the 
degree of uncertainty in the plant dynamics, such a result is still impressive.
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Case Study 4: Inverted Pendulum on Track
The fourth problem, ncddemo4, considers a variation of the popular inverted 
pendulum example. Specifically, we attach a cylindrical metal rod to a motor 
driven cart in such a way as to allow for rotation about only one axis. The cart 
is mounted on a linear track so as to create a stabilizable problem as shown 
below.

The Appendix provides an explanation of the equations of motion for the cart 
and pendulum. Besides the inherent nonlinearities of the system equations, 
limits on the voltage applied to the motor result in an actuation saturation 
constraint of 1N. Sensors provide cart position and pendulum angle 
measurements.

Problem Definition
In addition to stabilizing the inverted pendulum, we want the cart to follow a 
commanded reference signal. Specifically, we want to design a controller for 
the system to meet the following closed loop tracking specifications when the 
system is excited with a unit step:

• Maximum four seconds rise time

• Maximum six seconds settling time

• Zero overshoot

• Less than 0.2 radian deviation from vertical

Further, we want the closed loop response to be robust to the uncertainty in the 
plant dynamics. The Appendix explains how to generate an initial stabilizing 
controller using a linear approximation of the system. We leave it to you to 
introduce uncertainty (into the pendulum length, cart mass, etc.) if you want. 
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Case Study 4: Inverted Pendulum on Track
For example, you might explore whether it is more difficult to control the 
pendulum when it is 50% longer or when it is 50% shorter.

Problem Setup
The SIMULINK system ncddemo4 contains the plant and control structure. To 
open the system, type ncddemo4 at the MATLAB prompt or double-click on the 
NCD Demo 4 block in the SIMULINK system ncddemo. Notice the saturation 
nonlinearities included in the plant model and the masked pendulum block 
contain the nonlinear equations of motion for the system. We command the cart 
position with a unit step input. NCD blocks attach to the pendulum angle and 
cart position signals. Inspecting the System’s Parameters dialog box shows 
that each simulation lasts 15 seconds.

The control structure contains finite difference state estimators for the cart 
velocity and pendulum angular velocity (i.e., we only have position feedback). 
As part of an inner control loop (used to stabilize the pendulum), the cart 
velocity estimate, pendulum angle, and angular velocity estimate are 
multiplied by a gain, summed, and then input to the motor. We initialize this 
1-by-3 gain as Klqr = Clqr(2:4) where Clqr is the 1-by-4 LQR solution 
described in the Appendix. In an outer control loop (used to allow the cart to 
follow a commanded signal), a feedforward gain, Kf, is initialized as 
Kf = Clqr(1), and an intergral gain, Ki, is initialized to zero. Note that in the 
absence of a commanded signal, these initial controller values reduce the 
control structure to the LQR gain described in the previous section.
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4 Case Studies
Double-click on the block ncd4init to initialize the tunable variables as 
described above and define time domain response constraints for this 
demonstration. Double-click on the NCD blocks to open the NCD Blockset 
constraint figures and display the constraints. By now, the configuration of the 
cart position constraints should be familiar to you as typical for a step 
response. Meanwhile the pendulum angle channel contains constraints that 
essentially define a disturbance rejection problem. In other words, while the 
cart is moving to its commanded position on the track, the pendulum should 
remain more-or-less balanced.

Problem Solution
Before starting the optimization, open the Optimization Parameters dialog 
box by selecting Parameters ... from the Optimization menu and notice how 
the Optimization Parameters are defined.

Press the Start button, select Start from the Optimization menu, or hold down 
the accelerator key and press t to start the optimization. Watch the responses 
evolve and improve during the optimization. The optimization time, cost 
function evolution, and final values for the tunable variables may be different 
for different computers. However, the optimization should produce a controller 
which meets all the constraints.

You may notice this optimization runs slower than the other examples. This 
occurs because the finite state estimators require frequent updating during 
simulation.

References for Case Studies
[1] Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini, Feedback 
Control of Dynamic Systems, Addison-Wesley Publishing Company, 1987.

[2] Potvin, A.F. A Unified Solution to Constrained Configuration Control Law 
Design, Master’s Thesis, MIT EECS Dept., 1991.
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5 Troubleshooting
Where possible, the NCD Blockset provides visual cues to help you formulate 
problems and inform you about the progress of an optimization. Error checks 
have been included where possible. Messages and hints are displayed in the 
MATLAB command window and in dialog boxes. 

Only engineering experience with your application’s particular problem can 
guide you in deciding on a control structure. Often solutions to similar 
problems provide a good starting point for new problems. The evolution of your 
control design may take different paths and your final control structure may 
differ from the structure with which you began. Because the NCD Blockset 
permits you to specify the control structure, it can be valuable throughout the 
control design process. Following is a list of typical problems and 
recommendations for dealing with them.
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Control and Identification
Control and Identification
Problem: Which variables should I choose to tune/identify? Is there a limit to 
how many I can optimize?

Recommendation: Because the time necessary for optimization is 
proportional to the number of tunable variables, it is best to use minimal 
parameterizations (i.e., tune the fewest number of variables possible for a 
given control structure). For SISO state-space controllers, minimal 
parameterizations are given by the various canonical forms. This generalizes 
to MIMO state-space systems although MIMO canonical forms are less 
familiar to the average control engineer.

Problem: How should I choose initial conditions for my tunable variables?

Recommendation: No theory exists which can guarantee an initial stabilizing 
controller of arbitrary structure. In fact, determining whether a stabilizing 
controller of arbitrary structure even exists is an unsolved problem. Typical 
methods for attempting to generate an initial stabilizing controller include

• Generating a controller for a linearized system

• Trying a controller that worked for a similar system

Actually, the NCD Blockset does not require an initial stabilizing controller in 
order to begin its optimization. As long as the constrained signals remain 
bounded during the time horizon of the optimization, you can use the NCD 
Blockset. Of course, we cannot guarantee that the NCD Blockset converges to 
a stabilizing solution.
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5 Troubleshooting
Optimization
Problem: The optimization appears to only find a local minimum.

Recommendation: The NCD Blockset optimization does not guarantee finding 
a global optimum. In general, the problems formulated by the NCD Blockset 
are nonconvex. If you suspect that the answer returned by the NCD Blockset 
is not the global minimum (i.e., that it is possible to better meet the constraint 
bounds) consider starting the optimization from a different initial condition 
(i.e., use a different first guess for tunable variables).

Problem: The constrained signals have different response scales. Do the 
signals need to be normalized?

Recommendation: Yes. For systems containing multiple NCD blocks, the 
signals should be normalized. We suggest using Gain blocks to normalize 
signals before inputting them to the NCD block. The inverted pendulum 
example of Chapter 2 provided an example of such normalization. Alternately, 
you can normalize the signals by weighting all the constraint bound segments 
of that signal using the Constraint Editor dialog box. We recommend the 
convention of reserving the use of constraint segment weighting for weighting 
of one constraint relative to another.

Problem: The tunable parameters possess different magnitudes. Do the 
parameters need to be normalized?

Recommendation: No. The optimization automatically perturbs the variables 
in proportion to their magnitude. 

Problem: What happens if the system has discontinuous blocks?

Recommendation: Blocks containing discontinuities can be placed in the 
SIMULINK system. As long as the block’s output does not feed directly into a 
constrained signal, the NCD Blockset optimization should proceed normally. 
When the block’s output does feed directly to a constrained signal, gradient 
calculations may be inaccurate causing the optimization to perform more 
iterations. Small step sizes are a typical sign of this type of difficulty.

Problem: The optimization seems to go on forever.

Recommendation: As previously explained, the time required to run the 
optimization is proportional to the number of tunable parameters multiplied by 
the number of uncertain plants constrained multiplied by the duration of a 
single simulation. To decrease optimization runtime, you should tune few 
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Optimization
variables as possible, constrain as few plants as possible, and run the 
optimization for over as small a simulation time as possible. The duration of a 
single simulation is a function of the complexity of the system and the length 
(in system time) of the simulation. 

If the output to the MATLAB command window shows that no simulations are 
being completed (and the display option in the Tunable Variables dialog box 
is “on”), check the start and stop time of the system. The time response of the 
system should be constrained over the minimal period possible while still 
guaranteeing that the dynamics of interest are observed. If the optimization 
previously improved the system response, but continues running with little 
improvement in the cost function, consider relaxing the termination criterion 
using the Tunable Parameters dialog box. 

Remember that you can stop the optimization and recover an intermediate 
result using the Stop button. If the optimization continues but you observe 
little change in system response and cost function, consider stopping the 
optimization. Note that it may take a little while to process the stop.

Problem: The optimization displays the message ill posed in the MATLAB 
command window.

Recommendation: This problems typically arises when the tunable variables 
do not affect the cost function. Check for typographical errors in your
SIMULINK system or the Tunable Variables dialog box. Alternately, 
nonlinearities in the SIMULINK model may make the constrained signal 
response independent of the value of the tunable parameters. If you suspect 
this is the case, change the value of the tunable variables at the command line 
and verify no change occurs in the constrained signals. Possibly the 
optimization does not significantly perturb the tunable variables during its 
finite difference calculations. Try increasing the minimum and maximum 
perturbation elements of the options vector from the MATLAB command line. 
Type help foptions or see the Optimization Toolbox User’s Guide for more 
information.

Problem: The optimization displays the message infeasible in the MATLAB 
command window.

Recommendation: Sometimes the quadratic programming subproblem solved 
at each iteration of the optimization may not have a feasible solution. As long 
as the optimization continues (i.e., as long as it does not terminate with the 
infeasible message) you can ignore the message. Alternately, inconsistent 
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constraints also produce such a message. The simplest example constrains 
x<X1 and x>X2 where X2>X1. Check that lower and upper constraint bounds do 
not cross. Also lower bounds on tunable variables must be less than upper 
bounds. 

Problem: The tunable variables do not change during optimization.

Recommendation: The problem is most likely ill posed. See above.

Problem: The step response seems to become more unstable as the 
optimization progresses.

Recommendation: This problem typically arises because of an unachievable 
rise time constraint. In an attempt to better meet the rise time constraint, the 
optimization begins to violate the overshoot constraint. Try relaxing your rise 
time constraint and restarting the optimization.

Problem: Nothing happens when I start the optimization.

Recommendation: A previous error may have left the NCD Blockset in a 
nebulous state. Select Refresh from the Options menu and try again.

Problem: The optimization crashes with an Out of memory error.

Recommendation: Although out of memory errors can occur for a number of 
reasons (see the appropriate section in the Using MATLAB), the most likely 
cause of this error while using the NCD Blockset is a small ratio of 
discretization interval to length of simulation. Either decrease the length of the 
simulation or increase the discretization interval.

Problem: The optimization terminates by saying that Optimization 
converged successfully, but all the constraints have not been met.

Recommendation: Convergence of the optimization and successfully meeting 
all constraints are independent of each other. When the optimization reaches 
what it thinks is a (local) minimum, it terminates with the Optimization 
converged successfully message. It has met the constraint bounds as best it 
can given the initial conditions (initial guesses for the tunable variables). If you 
think that a better local (or global) minimum exists, consider starting the 
optimization with a different initial guess for the tunable variables. 
Alternately, the performance objectives may be overly stringent for the control 
structure used. If your closed loop system must meet the constraint bounds, 
consider changing your control structure (increase the order and/or complexity 
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Optimization
of the controller, use more powerful actuators, or add sensors to provide real 
measurements of estimated states).

Problem: Can the SIMULINK Accelerator make the NCD optimization run 
faster?

Recommendation: Yes, if you have the SIMULINK Accelerator, simply check 
Accelerate on your SIMULINK system Simulation menu and the NCD 
Blockset will run with the C code generated by the SIMULINK Accelerator. 
Because the majority of NCD Blockset optimization time is spent conducting 
simulations, using the SIMULINK Accelerator could greatly decrease the 
amount of time it takes to perform an optimization. Remember that to get the 
most speed from the SIMULINK Accelerator, you should close all Scope blocks 
and either remove M-file function blocks or replace them with Fcn blocks. 
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NCD Interface
Problem: Some of the text in dialog boxes is unreadable; the dialog boxes are 
too small.

Recommendation: Simply resize the dialog box window as you would any 
other window until it is large enough.

Problem: How can I tell the NCD Blockset which constraints are most 
important to meet?

Recommendation: Use the Constraint Editor dialog box to weight 
constraints relative to each other. For more information on the Constraint 
Editor dialog box, see Chapter 6.

Problem: Can the appearance of the NCD constraint window be altered? Can 
objects be added/deleted from the constraint window?

Recommendation: The NCD constraint window (and dialog boxes) are all 
MATLAB figures created with Handle Graphics® routines introduced in 
MATLAB 4.0. You can add objects to the constraint window using primitive 
functions (like line, surface, and text) as you would add them to any other 
figure. Objects can be deleted from the constraint window using the delete 
command, assuming that you have the object’s handle. To add objects to the 
constraint figure using higher level functions (like plot and surf), you must 
first use: set(0,'ShowHiddenHandles','on'), and obtain the constraint figure 
window handle. Note that changing a constraint figure’s UserData produces 
numerous error messages.

Problem: I typed clear or clear global at the MATLAB command line and 
now the NCD Blockset gives me numerous errors. What happened?

Recommendation: The NCD Blockset uses a global variable in the base 
(MATLAB) workspace. Clearing or altering this variable results in numerous 
errors if you attempt to continue the NCD session; you will most likely have to 
close down all NCD windows and begin again.

Problem: How else can the NCD Interface be affected by MATLAB command 
line input?

Recommendation: All NCD window handles are hidden so that they are 
protected from interference from extraneous plot commands. However, if you 
set the hidden handles property to on, then the NCD windows are like any 
other MATLAB figures, hence you must exercise a little extra caution when 
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NCD Interface
executing commands that affect graphics objects. For example, typing close 
all force will close the NCD figure windows.

Problem: How can I change the optimization start and stop times?

Recommendation: Use the Simulation Parameters... dialog box on your
SIMULINK model window to specify the time limits. Notice that the first time 
an NCD constraint figure is created, it automatically uses the system 
simulation start and stop time. The limits of the time axis can be set 
independently of the optimization start and stop times; the time axis limits 
only affect the graphical output.

Problem: Can I use the NCD Blockset on more than one system 
simultaneously?

Recommendation: Unfortunately, no. Since the NCD Blockset uses a global 
variable in its implementation, you can only design constraints and run 
optimizations for one system at a time. We expect that future versions of the 
NCD Blockset will not have this drawback.

Problem: Does the height of the constraint bounds have any significance?

Recommendation: No. The constraint bound height merely provides a visual 
cue to help you in manipulating constraints. You must be clicked within the 
constraint bound in order to stretch the constraint or move it up and down.
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Object Manipulation

Cursor Modes
The shape of the cursor changes according to the current activity. The default 
shape is an arrow pointing upward to the left. The following list shows the 
activities and the associated cursor shapes.

Manipulating Constraints
Many editing commands operate on selected constraint bound segments in the 
active window. To select a constraint bound segment, click on it; all other 
segments in the active window are deselected. A selected segment appears 
white while unselected segments appear red (black outlined in white on 
monochrome). To deselect all segments, click in the figure, not on a segment.

You can move, stretch, split, or open constraints in the NCD Blockset 
constraint figure by dragging with the mouse, using the keyboard, or using the 
menus and push buttons.

Using the Mouse
To move a constraint bound segment up or down, position the pointer over the 
segment and press and hold down the left mouse button. The pointer should 
change to an up/down drag cursor. While still holding the button down, drag 
the pointer to the target location, and release the mouse button.

To move a constraint bound segment boundary, position the pointer over the 
boundary to be moved, and press and hold down the left mouse button. The 
pointer should change to a left/right drag cursor. While still holding the button 

Activity Cursor Shape Cursor name

Ready for next action arrow

Moving a constraint fleur

Stretching a constraint cross hair

Opening a dialog box 
watch (until the dialog 
box is open)
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Object Manipulation
down, drag the pointer to the target location, and release the mouse button. 
Notice that the segments on either side of the boundary maintain their slopes.

To stretch a constraint bound segment, position the pointer just on the inside 
edge of the segment to be stretched and press and hold down the mouse button. 
The pointer should change to a fleur. While still holding the button down, drag 
the pointer to the target location, and release the mouse button. Note that 
short constraints may have to be stretched before they can be moved.

To split a constraint bound segment at a particular position, position the 
pointer over the segment to be split at the location you want to split the 
constraint, hold down the shift key and press the left mouse button (extended 
SelectionType). The segment splits where the pointer is and the segment to the 
left of the pointer selected. If you continue to hold down the left mouse button 
after splitting the segment, the selected segment can be stretched as described 
above.

To open a constraint bound segment, hold down the control key and press the 
left mouse button (alternate Selection Type). Opening a constraint bound 
segment creates a Constraint Editor dialog box. From the Constraint Editor 
dialog box, the selected constraint bound segment can be weighted. The 
Constraint Editor allows you to specify exactly the selected segment’s position 
using the Position editor [x1 y1 x2 y2] field. Selecting a different constraint 
bound segment updates the Constraint Editor. If no constraints in the current 
constraint figure are selected, the Constraint Editor is destroyed.

Using the Keyboard
Keypress shortcuts allow you to perform all constraint manipulations using the 
keyboard. To use keypress shortcuts, the pointer must be on the appropriate 
NCD constraint figure. The following table summarizes how constraint bounds 
can be moved using keypress shortcuts.
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.

To split a selected constraint bound segment, press s or S. The segment splits 
at its midpoint, and the left most half is selected. To toggle forward through the 
constraint bound segments, press f or F. To toggle backward through the 
constraints, press b or B. To unselect a selected constraint, press n or N.

Using Edit Menu and Control Panel
You can open a selected constraint bound segment using the Edit constraint... 
option under the Edit menu. If no constraint is currently selected, an error 
dialog box prompts you to select a constraint first by clicking on it.

You can split a selected constraint bound segment by pressing the Split button 
on the NCD Blockset constraint figure control panel. The selected constraint 
splits at its midpoint and the left portion of the segment becomes selected. If no 
constraint is currently selected, an error dialog box prompts you to select a 
constraint first by clicking on it.

Small
Movements

Large
Movements

Movement

d D Entire constraint down

u U Entire constraint up

r R Extend constraint right

l L Extend constraint left

m M Right side of constraint down

z Z Left side of constraint down

p P Right side of constraint up

q Q Left side of constraint up
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NCD Blockset Menus
The NCD Blockset menus appear on your particular platform in the same way 
as SIMULINK menus.

Menu items followed by a right arrow lead to a submenu. Menu items followed 
by an ellipsis lead to a settings dialog box. Stand-alone menu items result in a 
direct action.

You can execute some menu items by using keyboard accelerators. You invoke 
NCD Blockset accelerators in the same way you do SIMULINK accelerators. 
Learning to use the accelerator keys can significantly improve the efficiency of 
your NCD Blockset sessions.

The following sections describe the NCD Blockset menus and the dialog boxes 
associated with menu items.
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File Menu
Load Select a set of constraints and constraint data to load from disk.

Close Remove the NCD constraint figure from the screen.

Save Write a set of constraints and constraint data to a file.

Print Print the Constraint axes.

Load...

Load displays a dialog box with a list of existing files from which you can select 
the file you want to display. You can list the contents of a different directory by 
changing the path in the selection box. You can view more filenames by moving 
the scroll bar up or down. You can select a file by double-clicking on that 
filename or by typing the filename in the edit field and then clicking on the 
Open button. When you select a file, the new constraints are loaded into the 
workspace and displayed in all appropriate NCD Blockset figures.
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Save...

Save displays a dialog box for specifying the name of the file in which to save 
the constraints and other data used by the NCD Blockset. You can save the 
constraints to a currently existing file or enter a new name. You can also 
change the directory in which the constraints are saved (essentially, making a 
copy in another location).
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Edit Menu
Undo Undo the previous constraint bound edit.

Edit constraint... Edit the selected constraint bound segment.

Delete plots Delete all lines in the current NCD figure.

Edit constraint...

Edit constraint displays a dialog box for specifying the constraint bound 
segment weight and position. To open the Constraint Editor dialog box either 
control-click (Alternate Selection Type) on a constraint bound or select Edit 
constraint... from the Edit menu while a constraint is selected. The 
Constraint Editor dialog box appears as shown above.

Use the Position editor [x1 y1 x2 y2] editable text field to precisely place a 
constraint. You can also change the weighting associated with a constraint 
bound segment using the Constraint Editor dialog box. By default, all 
constraints possess weight equal to one. Any constraint with weight greater 
than zero is classified as an overachieving constraint. This means that the cost 
function of the optimization is such that even after the response has met the 
constraints, further improvement in the optimization cost function may be 
possible (i.e., the optimizer attempts to drive the response away from the 
constraint). A weight of zero implies a hard constraint. This means that once 
the constraints have been met, no further improvement in the cost function can 
be made. A more technical explanation of constraint weighting can be found in 
the Appendix.
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Options Menu
Initial response Plot initial response of system.

Reference input... Define reference signal.

Step response... Specify step response characteristics.

Time range... Choose range of axes

Y-Axis... Change Y-axis limits.

Refresh Redisplay all constraints for this output.

Reference input...

Reference input displays a dialog box for specifying a reference input for the 
constrained output. The reference input does not affect the 
SIMULINK system. It merely plots the lines specified by the time vector and 
input vector lines.
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Step response...

Step response displays a dialog box for specifying step response 
characteristics. The dialog box operates on constraints between the step time 
and the final time. Changes to the constraint bound segments occur when the 
editable text field control callback executes. Entering a settling time without a 
percent settling value results in a default five percent settling. Entering a rise 
time without a percent rise value results in a default 90 percent rise.

Time range...

Time range displays a dialog box which allows you to change the X-axis limits 
and label of the current NCD Blockset constraint figure. The dialog box expects 
you to input a 1 × 2 matrix for X axis limits. You can enter any string for X-axis 
label. Note that the values entered here only affect the time axis limits in the 
6-10



Options Menu
current NCD figure. To change the optimization start and stop times use the 
Simulation Parameters dialog box in your SIMULINK model. 

Y-Axis...

Y-Axis displays a dialog box which allows you to change the Y-axis limits and 
label of the current NCD Blockset constraint figure. The dialog box expects you 
to input a 1-by- 2 matrix for Y-axis limits. You can enter any string for Y-axis 
label.
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Optimization Menu
Start Start optimization of tunable variables.

Stop Stop optimization if one is in progress.

Parameters... Edit optimization parameters.

Uncertainty... Edit uncertainty variables.

Parameters...

Parameters displays a dialog box for specifying the tunable variables and 
other optimization parameters (such as lower and upper bounds on the tunable 
variables and discretization interval) to be used in the current optimization. 
You can disable the display from the optimization routine (to the MATLAB 
command window) by checking off the Display optimization information check 
box.

By default, the optimization routine does not stop as soon as all the constraints 
are met, it tries to overachieve. If you wish to stop as soon as the constraints 
are met, then enable the Stop optimization as soon as the constraints are 
achieved check box.
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You can specify the optimization routine to use a separate routine (see 
gradfun.m) for computing the gradients by enabling the Compute gradients 
with better accuracy (slower) check box.

Uncertainty...

Uncertainty displays a dialog box for specifying the uncertain variables and 
other uncertainty information (such as lower and upper bounds on the 
uncertain variables and number of Monte Carlo simulations to run) to be used 
in the current optimization.
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Style Menu
Grid Toggle grid display.

Snap Toggle 22.5 degree snap.

Hot-key help... Show help on menu accelerators and keypress shortcuts.
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NCD Blockset Control Panel
The NCD Blockset control panel is available at the bottom of the NCD Blockset 
constraint figure.

Port displays the port number of the constraint signal in the SIMULINK 
model corresponding to this figure. You can enter the port number of any other 
NCD blocks in the model to switch the figure window from one constrained 
signal to another. The number you enter in this editable text field should 
correspond to the port number of an NCD block, which is in fact a masked 
outport block.

Split splits a selected constraint bound segment at its midpoint leaving the left 
half of the segment as the selected segment. If no constraint bound segments 
are currently selected, an error dialog is displayed.

Start begins the optimization of tunable variables.

Stop halts the optimization when pressed while the optimization is in progress.

Help creates a general NCD Blockset Help dialog box.

Close removes the NCD Blockset constraint figure from the screen. If you have 
made changes to the constraints or other NCD Blockset variables, a dialog box 
asks you if you want to save the NCD Blockset constraints and data to a file.
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A Appendix
This appendix to the NCD Blockset discusses the following areas:

• Optimization Details

• Representation of Time Domain Constraints

• NCD Global Variable: ncdStruct

• LQR Design for Inverted Pendulum
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Optimization Details 
This section discusses the details of the optimization invoked when you press 
the Start button or select the Start menu item from the Optimization menu. 
Because the NCD Blockset automates the entire optimization process, 
familiarity with these details is not required and this section may be 
considered optional.

Problem Formulation Details
The constraint bounds displayed in the NCD Blockset constraint window are 
for visualization purposes only. Two matrices, ncdStruct.CnstrLB and
ncdStruct.CnstrUB, contain all the constraint information. See the next 
section for more information about how ncdStruct.CnstrLB and
ncdStruct.CnstrUB store constraint data and for a summary of other fields of 
the global variable ncdStruct defined by the NCD Blockset. For now, it is 
enough to know that each constraint bound matrix consists of groups of 
weighted line segment data for each output constrained.

When the optimization is started, the NCD Blockset invokes the routine 
nlinopt. Generation of the optimization problem involves three steps:

1 Processing uncertainty data

2 Expanding the constraint matrices ncdStruct.CnstrLB and ncd-
Struct.CnstrUB.

3 Invoking the constrained optimization routine constr

The NCD Blockset routine montevar processes uncertainty data input to the 
Uncertain Variables dialog box. It generates Monte Carlo plant data and 
performs certain error checks. The routine produces the Monte Carlo plants 
assuming a uniformly distributed probability density between the lower and 
upper bounds entered into the Uncertain Variables dialog box.

The NCD Blockset routine convertm expands the constraint matrices, 
ncdStruct.CnstrLB and ncdStruct.CnstrUB, using the discretization interval 
Td = ncdStruct.Tdelta. Generally speaking, constraints are generated at an 
interval of Td, per constraint segment per constrained signal.
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After more error checking, nlinopt vectorizes the tunable variables and 
invokes the constrained optimization routine constr. Specifically, if you input 
V1 V2... as tunable variables into the Optimization Parameters dialog box, 
the NCD Blockset passes the vector x = [V1(:); V2(:); ... gamma] to 
constr. By calling constr with a special option flag, it expects gamma to contain 
the value of the cost function. The NCD Blockset problem formulation defines 
the cost function as the (weighted) maximum constraint violation. The constr 
routine perturbs each tunable variable in turn and evaluates the resulting cost 
function and constraint equations. After determining a gradient (search 
direction) from this information, constr performs a line search along the 
gradient in an attempt to simultaneously minimize the cost while satisfying 
constraint equations. 

The NCD Blockset routine costfun returns the cost function and constraints. 
As mentioned above, costfun calculates the cost function

CostFunction = x(length(x)); % i.e. gamma

which corresponds to the (weighted) maximum constraint violation. The 
routine then initializes the constraint vector to the empty matrix and recovers 
(defines) the tunable variables from the vector x described above. Next, it 
initiates a for loop according to the number of plants constrained, Npc. 
Specifically, Npc is the number of Monte Carlo simulations to be constrained 
plus the nominal, upper bound, and lower bound plant if they are constrained. 

Within each for loop, costfun assigns the uncertain plant variables (as 
defined by the routine montevar) and calls for a simulation. It next linearly 
interpolates the simulation output to the time basis Tstart:Td:Tstop using 
the table1 command. If necessary, it updates the plots of any open NCD 
constraint figures. Finally, it augments the constraint vector. 

To describe the constraint vector in detail, we define

Yout a length(Tstart:Td:Tfinal) by p matrix corre-
sponding to the linearly interpolated simulation 
output (i.e., the SIMULINK system has p 
NCD-masked Outport blocks)
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Then convertm defines Mu and Ml, which have three columns described by

Given this, each pass through the for loop augments the constraint vector, 
ConstraintError, as

ConstraintError = [
ConstraintError; ...
Yout(Mu(:,1)) – Mu(:,2) – Mu(:,3)*CostFunction; ...

Ml(:,2) – Yout(Ml(:,1)) – Ml(:,3)*CostFunction];

which implies that the system response should be less than upper bound 
constraints and greater than lower bound constraints.

Ml [AbsoluteYoutIndex Bound Weight]

Mu [AbsoluteYoutIndex Bound Weight]
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The following pseudocode summarizes the optimization.

% Begin nlinopt
% Process uncertain variable information (montevar)
% Expand constraint matrices (convertm)
% Initialize arguments for constr.m

% Begin constr
while ~(termination_criterion_met),

for 1:Ntp, % Number of tunable parameters
% Begin costfun
% Calculate cost function (CostFunction)
% Set tunable variables
for 1:Npc, % Number of plants constrained

% Assign plant uncertain variables
% Call for simulation
% Convert simulation time index
% Draw necessary plots
% Calculate constraints
% Append constraints into vector 
% i.e ConstraintError

end % for Ntp
% End costfun

% Tweak tunable variables in turn
end % for Ntp
% Calculate gradient information
% Define search direction
% Perform line search
% Determine termination_criterion_met

end
% End constr
% End nlinopt

Notice that the number of simulations conducted at each iteration is given by

Ns = Ntp*Npc + O(1)

where Ntp is the total number of elements in the tunable parameters and Npc 
is the number of plants constrained as defined above. The extra term O(1) 
arises due to the line search, which is discussed in the next section. The term 
O(1) does not depend on either Ntp or Npc and is typically one. To decrease your 
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optimization time, you should constrain as few plants and tune as few 
variables as possible. For example, when you optimize with uncertainty, try 
constraining only the upper and lower bound plant (i.e., do not constrain the 
nominal plant or any Monte Carlo generated plants). Once the optimization 
has completed, inspect the nominal plant response and a number of Monte 
Carlo plant responses by checking the appropriate boxes in the Uncertain 
Variables dialog box and selecting Initial response from the Options menu.

Each constrained output generates approximately
2*Npc*floor((Tstop–Tstart)/Td) constraints, where Npc equals the number 
of plants constrained, Tstop is the simulation stop time, Tstart is the 
simulation start time, and Td is the discretization interval. More specifically, 
each constraint bound segment defined between time T1 and T2 (T2>T1) 
generates exactly floor((T2–T1)/Td) constraints for each plant constrained. 
Since the optimization routine generates a square matrix of the same size as 
the number of constraints, care must be taken not to generate too many 
constraints for risk of encountering memory problems. Choosing a 
discretization interval of between 1 and 2 percent of the total simulation time 
should keep you safe from Out of memory errors while at the same time 
generating enough constraints to satisfactorily approximate the continuous 
time constraint bounds of the constraint figures.

Optimization Algorithmic Details
As mentioned in Chapter 2, the NCD Blockset transforms the constraints and 
simulated system output into an optimization problem of the form

where the boldface characters denote vectors. This type of optimization 
problem is solved in the Optimization Toolbox routine constr. In reference to 
the last section, 

 γ gamma
g(x)- w γ ConstraintError
x x

min γ
x γ, s.t.  

g x〈 〉 wγ– 0≤
xl x xu≤ ≤
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The Sequential Quadratic Programming (SQP) method used by constr solves 
a Quadratic Programming (QP) problem at each iteration and updates an 
estimate of the Hessian of the Lagrangian. The line search is performed using 
a merit function. The routine uses an active set strategy for solving the QP 
subproblem.

The implementation of the SQP subproblem attempts to satisfy the 
Kuhn-Tucker equations, which are necessary conditions for optimality of a 
constrained optimization problem. The principal idea of the SQP algorithm 
forms a QP problem at each iteration based on the quadratic approximation of 
the Lagrangian function.

The QP solution procedure involves two phases: the first phase involves the 
calculation of a feasible point (if one exists); the second phase involves the 
generation of an iterative sequence of feasible points, which converge to the 
solution. In this method, an active set is maintained of the active constraints 
at the solution point. Virtually all QP algorithms are active set methods. This 
point is emphasized because many different methods exist, which are very 
similar in structure but which are described in widely different terms.

The routine constr further exploits the special structure of the constrained 
problem. For example, it can be shown from the Kuhn-Tucker equations that 
the approximation to the Hessian of the Lagrangian, should have zeros in the 
rows and columns associated with the variable γ. However, this results in only 
a positive semi-definite Hessian which requires a more elaborate (slow) QP 
solution technique. Instead the algorithm initializes the Hessian matrix with 
ones along its diagonal except for the element associated with γ, which is 
initialized to a small positive number (e.g., 1e-10). Throughout the 
optimization, the code maintains zeros in all rows and columns of the Hessian 
associated with γ except the diagonal element, which is maintained at the small 
number. This allows the code to use a fast converging positive definite QP 
method while at the same time exploiting the problem’s special structure. 

The routine constr relates the status of the QP algorithm in the last column of 
the display output (the column labeled Procedures). Generally no display 
appears in the column meaning the Hessian is positive definite. For 
nonpositive definite Hessians, two successive modifications can be performed 
to make the Hessian positive definite. If the first modification succeeds, the 
message mod Hess appears in the Procedures column. The second modification 
always results in a positive definite Hessian and displays mod Hess(2) in the 
Procedures column. Often such messages imply that the optimization is far 
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from a solution or that the problem is particularly sensitive to variations in 
some of the tunable parameters.

A nonlinearly constrained problem can often be solved in fewer iterations using 
SQP than an unconstrained problem. One of the reasons for this is that, due to 
the limits on the feasible area, the optimizer can make well informed decisions 
regarding directions of search and step length. This characteristic of the 
nonlinearly constrained problem is advantageous to the NCD problem 
formulated since calculation of the cost function is computationally time 
consuming (it requires simulation of the system). Time saved due to fewer 
iterations more than compensates for the additional overhead associated with 
the constrained formulation.

For more information on the algorithms discussed in this section, see the 
Optimization Toolbox User’s Guide.
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Representation of Time Domain Constraints
This section discusses the constraint bounds displayed in the NCD Blockset 
constraint window, which are for visualization purposes only. All constraint 
information is contained in two matrices, ncdStruct.CnstrLB and
ncdStruct.CnstrUB, which are fields of the global structure variable
ncdStruct. Each constraint bound consists of groups of line segment data for 
each output constrained. 

The matrix ncdStruct.CnstrLB (ncdStruct.CnstrUB) has dimension 4 × 2L 
where L is the total number of line segments in all lower (upper) bounds. The 
first row of ncdStruct.CnstrLB and ncdStruct.CnstrUB contains the outport 
number for the constraint. All constraint bound segments for the same outport 
are grouped together. The second row contains the time axis values of the 
segment while the third row contains the response axis values. The time axis 
values for each output increase monotonically from optimization start time to 
optimization stop time. The time value end of one segment equals the time 
value beginning of the next segment. The fourth row of ncdStruct.CnstrLB 
(ncdStruct.CnstrUB) contains information about the segment’s weighting.

As an example, consider the lower bound constraint matrix,

The matrix’s first row shows that two outputs are constrained. The first output 
is constrained by three line segments and the second by one line segment. 
Constraints on the second output are defined by the line segment from the 
(time, response) point (0,-0.1) to the point (100,-0.1). Constraints on the first 
output are defined by the line segments from (0,0) to (10,0), from (10,0.9) to 
(30,0.9), and from (30,0.99) to (100,0.99). We expect a simulation start time of 
zero and stop time of 100. The fourth row shows that all line segments are 
weighted equally, with weight of one (the even columns of the fourth row are 
reserved for future use).

ncdStruct.CnstrLB

1 1 1 1 1 1 2 2
0 10 10 30 30 100 0 100
0 0 0.9 0.9 0.99 0.99 0.1– 0.1–

1 0 1 0 1 0 1 0

=
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NCD Global Variable ncdStruct
This section discusses the fields in the global variable ncdStruct that is created 
in your workspace when using the NCD Blockset. Clearing these variables or 
changing them in unexpected ways causes the NCD Blockset to generate errors 
from which you may not be able to recover.

These variables are associated with the NCD optimization problem:

ncdStruct.TvarStr Single row string containing the names of the 
tunable variables. This string is changed via the 
Tunable Variables edit field on the Tunable 
Variables dialog box.

ncdStruct.TvlbStr Single row string which, when evaluated, 
defines a lower bound on the tunable variables. 
This string is changed via the Lower bounds edit 
field on the Tunable Variables dialog box.

ncdStruct.TvubStr Single row string which, when evaluated, 
defines an upper bound on the tunable variables. 
This string is changed via the Upper bounds edit 
field on the Tunable Variables dialog box

ncdStruct.Tdelta Scalar defining the discretization interval. This 
scalar is changed via the Discretization interval 
edit field on the Tunable Variables dialog box.

ncdStruct.CostFlag Boolean equal to 1 if optimization should con-
tinue even after achieving the constraints. This 
Boolean is changed via the Stop optimization as 
soon as the constraints are achieved check box on 
the Tunable Variables dialog box.

ncdStruct.GradFlag Boolean equal to 1, if the optimization routine is 
specified to use an accurate method for gradi-
ents. This Boolean is changed via the Compute 
gradients with better accuracy (slower) check box 
on the Tunable Variables dialog box.
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Variables associated with plant uncertainty:

ncdStruct.OptmOptns Vector sets various optimization options as 
defined in the Optimization Toolbox User’s 
Guide. Some elements of this vector are changed 
via the Display check box and Terminate for x 
and Terminate for g edit fields on the Tunable 
Parameters dialog box.

ncdStruct.UvarStr Single row string containing the names of the 
uncertain variables. This string is changed via 
the Uncertain Variables edit field on the Uncer-
tain Variables dialog box.

ncdStruct.UvlbStr Single row string which, when evaluated, defines 
a lower bound on the uncertain variables. This 
string is changed via the Lower bound edit field 
on the Uncertain Variables dialog box.

ncdStruct.UvubStr Single row string which, when evaluated, defines 
a lower bound on the uncertain variables. This 
string is changed via the Upper bound edit field 
on the Uncertain Variables dialog box.

ncdStruct.NumMC Scalar number of Monte Carlo plants to be gener-
ated.

ncdStruct.PlntON 1-by-4 vector of Booleans relating whether nom-
inal plant, lower bound uncertain plant, upper 
bound uncertain plant, and Monte Carlo plants 
are to be included in the optimization.
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Variables associated with the interface:

Additional global variables associated with program flow (and communication 
between constr and NCD Blockset):

ncdStruct.RefSgnl String matrix used for plotting reference sig-
nals for the various outputs.

ncdStruct.RngLmts A 3-by-2N matrix, where N is the number 
NCD blocks, containing the x- and y-axis 
limits for constraint figures. The first row 
specifies the port number, with two columns 
for each NCD block. The second and third 
rows contain [xmin xmax] and [ymin ymax] 
axis limits, respectively, for the port speci-
fied in the corresponding column in the first 
row.

ncdStruct.SavdFlg Boolean equal to 1 if no changes have been 
made to the constraint bounds, optimization 
variables, or uncertain variables since data 
has last been saved.

ncdStruct.SysName Boolean equal to 1 if no changes have been 
made to the constraint bounds, optimization 
variables, or uncertain variables since data 
has last been saved.

OPT_STOP Boolean equal to 1 if the Stop button has 
been pushed.

OPT_STEP Boolean equal to 1 if the optimization is 
presently evaluating the cost function of a 
major iteration. Used as a flag for plotting 
during optimization.
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LQR Design for Inverted Pendulum
Chapters 2 and 4 contain examples of an inverted pendulum system. Both 
examples assume that an initial stabilizing LQR controller exists. This section 
details how that controller is generated.

Recall that, ignoring motor dynamics, the nonlinear equations of motion for the 
inverted pendulum system are 

where

f Force applied to the cart by motor in Newtons

Position of cart in meters

y Angle of pendulum from vertical in radians

Θ Mass of cart (0.455kg)

M Mass of pendulum (0.21kg)

l Distance to center of mass of pendulum (i.e., one half its 
length of 0.61m

g Acceleration of gravity (9.8m/s^2)
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These equations may be linearized about the operating point y = 0 and
Θ = 0 to yield the linear system

Using the MATLAB command

Klqr = lqr(A,b,diag([0.25 0 4 0],0.003)

produces the stabilizing gain

Klqr = [–28.8675 –28.5632 –145.0014 –14.8601]

which is the initial stabilizing gain used in Chapters 2 and 4.
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