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16. Linear Dynamic System Identification

The term linear system identification often refers exclusively to the identifi-
cation of linear dynamic systems. In this chapter’s title the term “dynamic”
is explicitly mentioned to emphasize the clear distinction from static sys-
tems. An understanding of the basic concepts and the terminology of linear
dynamic system identification is required in order to study the identification
of nonlinear dynamic systems, which is the subject of all subsequent chap-
ters. The purpose of this chapter is to introduce the terminology, concepts,
and algorithms for linear system identification. Since this book deals exten-
sively with local linear models as a very promising approach to nonlinear
system identification, most of the methods discussed in this chapter can be
transferred to this particular class of nonlinear models. It is one of the main
motivations for the use of local linear model approaches that many existing
and well-understood linear techniques can be successfully extended for non-
linear processes. A more detailed treatment of linear system identification
can be found in [40, 81, 171, 172, 193, 233, 360]. Practical experience can be
casily gathered by playing around with the MATLAB system identification
toolbox [234]. i

This chapter is organized as follows. First, a brief overview of linear system
identification is given to characterize the models and methods discussed here.
Section 16.3 introduces the terminology used for naming the different linear
model structures and explains the basic concept of the optimal predictor and
prediction error methods for estimating linear models from data. After a brief
discussion of time series models in Sect. 16.4, the linear models are classified
into two categories: models with output feedback (Sect. 16.5) and models
without output feedback (Sect. 16.6). Section 16.7 analyzes some advanced
aspects that have been omitted in the preceding sections for the sake of
an easier understanding. Recursive algorithms are summarized in Sect. 16.8.
The extension to models with multiple inputs and outputs is presented in
Sect. 16.10. Some specific aspects for identification with data measured in
closed loop are introduced in Sect. 16.11. Finally, a summary gives some
guidelines for the user.
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Fig. 16.1. Overview of linear system identification methods. Only the methods
within the dark shaded box are discussed in this chapter. Note that the methods not
the models are classified into parametric and non-parametric ones. Non-parametric
models, such as a finite impulse response model, may indeed be estimated with
a parametric method if the infinite series is approximated by a finite number of
parameters

16.1 Overview of Linear System Identification

Figure 16.1 gives an overview of linear system identification methods. They
can be distinguished into parametric and non-parametric approaches. It is
helpful to distinguish clearly the model and the type of method applied to
determine the degrees of freedom of the model. The model can be parametric
or non-parametric:

e Parametric models can (or are assumed to be able to) describe the true
process behavior exactly with a finite number of parameters. A typical
example is a differential or difference equation model. Often the parameters
have a direct relationship to physical quantities of the process, e.g., mass,
volume, length, stiffness, viscosity.

o Non-parametric models generally require an infinite number of parameters
to describe the process exactly. A typical example is an impulse response
model,

Furthermore, parametric and non-parametric methods can be distinguished:

e Parametric methods determine a relatively small number of parameters.
Usually these parameters are optimized according to some objective. A
typical example is parameter estimation by linear regression. Parametric
methods can also be used for determination of approximate non-parametric
models whose number of parameters have been reduced to a finite number.
A typical example is a finite impulse response (FIR) model that approxi-
mates the infinite impulse response of a process.

o Non-parametric methods are more flexible than parametric methods. They
are used if less structure is imposed on the model. A typical example is
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Fourier analysis, which yields functions of frequency and thus is not de-
scribable by a finite number of parameters. Although eventually, in their
actual implementation, non-parametric methods exhibit a certain (finite)
number of “parameters” (e.g., for a discrete time Fourier analysis, the
complex amplitudes for all discretized frequency intervals), this number is
huge and independent of any model structure. Rather the number of “pa-
rameters” depends on factors such as the number of data samples or the
quantization.

This chapter focuses on parametric models and methods for linear system
identification. For a detailed discussion of non-parametric approaches refer to
[81, 171]. Furthermore, this chapter considers only time-domain approaches.

16.2 Excitation Signals

The input signal u(k) of the process under consideration plays an important
role in system identification. Clearly, the input signal is the only possibility
to influence the process in order to gather information about its behavior.
Thus, the question arises: How should the input signal be chosen?

In most real-world applications there exist a large number of constraints
and restrictions on the choice of the input signal. Certainly for any real
process the input signal must be bounded, i.e., between a minimum %myi, and
maximum value Uy, Furthermore, the measurement time is always limited.
Besides these basic restrictions in the ideal case the user is free to design the
input signal. This situation may arise for pilot plants or industrial processes
that are not in regular operation. However, most often the situation is far from
ideal. Typically safety restrictions must be obeyed, and one is not allowed to
push the plant to its limits. If the plant is in normal operation, usually no
or only slight changes to the standard input signal are allowed in order to
meet the process goals, e.g., the specifications of the produced product. In
the following, some guidelines for input signal design are given, which should
be heeded whenever possible.

Figure 16.2 shows a process in which all disturbances are transferred to
the output in the noise n(k). Disturbances that in reality affect the input
or some internal process states can be transformed to the process output
by a proper frequency shaping by means of a filter. Because the noise n(k)
cannot be influenced, the input signal is the user’s only degree of freedom to
determine the signal-to-noise ratio. Thus, the input amplitudes should exploit
the full range from tmin tO Umax in order to maximize the power of the input
signal and consequently the signal-to-noise ratio. Therefore, it is reasonable
to switch between ., and %max.

The spectrum of the input signal determines the frequencies where the
power is put in. Obviously, the identified model will be of higher quality for
the frequencies that are strongly excited by the input signal than for those
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Fig. 16.2. Input and disturbed output of a process are measured and used for
identification

that are not. If the input signal is a sine wave, only information about one
single frequency is gathered, and the model quality at this frequency will be
excellent at the cost of other frequency ranges. So, for input signal design
the purpose of the model is of fundamental importance. If the emphasis is on
the static behavior the input signal should mainly excite low frequencies. If
the model is required to operate only at some specific frequencies an additive
mixture of sine waves with exactly these frequencies is the best choice for the
input signal. If the model is utilized for controller design a good match of the
process around the Nyquist frequency (—180° phase shift) is of particular
importance. An excitation signal for model-based controller design is best
generated in closed loop [116]. If very little is known about the intended use
of the model and the characteristics of the process, a white input signal is the
best choice since it excites all frequencies equally well. Note, however, that
often very high frequencies do not play an important role, especially if the
sampling time T is chosen very small. Although in practice it is quite common
to choose the sampling frequency as high as possible with the equipment
used, it is advisable to choose the sampling time at about one twentieth to
one tenth of the settling time of the process [170]. If sampling is performed
much faster the damping of the process typically is so large at high frequencies
that it makes no sense to put too much energy in these high frequency ranges.
Furthermore, most model structures will be a simplified version of reality and
thus independent of the excitation signal; structural errors will inevitably be
large in the high frequency range.

Ezample 16.2.1. Input Signals for Excitation

The following figures illustrate some typical input signals and the correspond-
ing output of a first order system with gain K = 1 and time constant 7' = 8s
sampled with Ty = 1s that follows the difference equation

y(k) = 0.1175u(k — 1) + 0.8825y(k — 1). (16.1)

This process is excited with each of the input signals shown in Figs. 16.3-
16.7, and 100 measurements are taken. These samples are used for identifi-
cation of a first order ARX model; see Sect. 16.3.1. The process is disturbed
with filtered white noise of variance 0.01. Note that the noise filter is chosen
equal to the denominator dynamics of the process 1/A in order to meet the
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Fig. 16.3. Excitation with a constant signal (left) and the undisturbed process
output (right)
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Fig. 16.4. Excitation with an impulse signal (left) and the undisturbed process
output (right)

assumption of the ARX model. Because the model structure and the process
structure are identical the bias error (Sect. 7.2) of the model is equal to zero,
and all errors are solely due to the noise.

The results of the identification are given in each figure and summarized in
Table 16.1. The comparison of the input signals demonstrates the follow’ing:

e (Constant: Only suitable for identification of one parameter, here the static
gain K, which is given by b; /(1—a4 ). Not suitable for identification because
no dynamics are excited. The parameters b; and a, cannot be estimated
independently; only the ratio b /(1 — a1) is correctly identified.

e Impulse: Not well suited for identification. In particular, the gain is esti-
mated very inaccurately.

e Step: Well suited for identification. Low frequencies are emphasized. The
static gain is estimated very accurately.

e Rectangular: Well suited for identification. Depending on the frequency of

the rectangular signal a desired frequency range can be emphasized. For
the signal in Fig. 16.6 the time constant is estimated very accurately.

e PRBS (pseudo random binary signal): Well suited for identification. Im-

itates white noise in discrete time with a deterministic signal and thus
excites all frequencies equally well.
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Fig. 16.5. Excitation with a step signal (left) and the undisturbed process output
(right)
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Fig. 16.6. Excitation with a rectangular signal (left) and the undisturbed process
output (right)
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Fig. 16.7. Excitation with a PRBS (pseudo random binary signgl) (left). The
PRBS is an deterministic approximation of white noise in discrete time [171]. The
undisturbed process output is shown at the right

16.3 General Model Structure

In this section a general linear model structure is introduced from which
all linear models can be derived by simplifications. This general model is
not normally used in practice; it just serves as a unified framework. The
output y(k) of a deterministic linear system at time k can be computed by
filtering the input (k) through a linear filter G(g) (¢ denotes the forward shift
operator, i.e., g 'z(k) = z(k—1), and thus it is the time domain counterpart
of the z = e/“-operator in the frequency domain):
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Table 16.1. Identification results for different excitation signals

Input signal by a) K T [s]

Constant 0.2620 -0.7392 1.0048 3.3098

Impulse 0.0976 -0.8570 0.6826 6.4800

Step 0.1220 -0.8780 0.9998 7.6879

Rectangular 0.1170 -0.8834 1.0033 8.0671

PRBS 0.1201 -0.8796 0.9980 7.7964

True process 0.1175 -0.8825 1 8
B(g)

y(k) = Gl@u(k) = =—cu(k). (16.2)

A(q)

In general, the linear transfer function G(g) may possess a numerator B (q)
and a denominator ﬁ(q) In addition to the deterministic part, a stochastic
part can be modeled. By filtering white noise v(k) through a linear filter H(q)
any noise frequency characteristic can be modeled. Thus, an arbitrary noise
signal n(k) can be generated by

C
n(k) = H(q)uv(k) = :@v(k). (16.3)
D(q)
A general linear model describing deterministic and stochastic influences
is obtained by combining both parts (see Fig. 16.8a)

y(k) = Glq)u(k) + H(q)v(k). (16.4)

The filter G(q) is called the input transfer function, since it relates the
input u(k) to the output y(k), and the filter H(q) is called the noise transfer
function, since it relates the noise v(k) to the output y(k). These transfer
functions G(¢g) and H(g) can be split into their numerator and denominator
polynomials; see Fig. 16.8b. For future analysis it is helpful to separate a pos-
sibly existent common denominator dynamics A(g) from G(q) and H(q); see
Figs. 16.8¢ and 16.8d. Thus, F(g)A(q) = A and D(q)A(g) = D. If A(q) and
D{(g) do not share a common factor then simply A(g) = 1. These notations
of the transfer functions in Fig. 16.8a and the polynomials in Fig. 16.8d have
been accepted standards since the publication of Ljung’s book [233]. So the
general linear model can be written as

_ B Cla)
Y = Foa@"® * pgam*® RO
or equivalently as
Alq)y(k) = %u(k} + %’u(fe) (16.6)
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Fig. 16.8. A general linear model
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By making special assumptions on the polynomials 4, B, C, D, and F'
the widely applied linear models are obtained from this general form. Before
these simpler linear models are introduced it is helpful to make a few general
remarks on the terminology and to discuss some general aspects that are
valid for all types of linear models.

16.3.1 Terminology and Classification

Unfortunately the standard terminology of linear dynamic models is quite
confusing. The reason for this is the historic development of these models
within different disciplines. Thus, some expressions stem from time series
modeling in economics. Economists typically analyze and try to predict time
series such as stock prices, currency exchange rates, and unemployment rates.
A common characteristic of all these applications is that the relevant input
variables are hardly known and the number of possibly relevant inputs is
huge. Therefore, economists started by analyzing the time series on its own
without taking any input variables into account. Such models result from
the general model in Fig. 16.8 and (16.6) by discarding the input, that is,
u(k) = 0. Then the model becomes fully stochastic. Such a time series model
is depicted in Fig. 16.9, opposed to the purely deterministic model shown in
Fig. 16.10. From this time series point of view the terminology used in the
following is logical and straightforward. Ljung’s book [233] established this
as the now widely accepted standard in system identification.
A time series model with just a denominator polynomial (Fig. 16.11)

y(k) = qu)

is called an autoregressive (AR) model.
A time series model with just a numerator polynomial (Fig. 16.11)

y(k) = C(q)v(k) (16.8)

is called a moving average (MA) model.

v(k) (16.7)

wk) MK

—— Hig) —

Fig. 16.9. A general linear time series model. The model input v(k) is a white
noise signal. There is no deterministic input u(k)

k) k
u(k) ) baly)

Fig. 16.10. A general linear deterministic model. The model input u(k) is a de-
terministic signal. There is no stochastic influence such as a white noise v(k)
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Fig. 16.11. An overview of time series models: autoregressive (AR), moving average
(MA), and autoregressive moving average (ARMA) models

A time series model with a numerator and denominator polynomial

(Fig. 16.11)
y(k) = %%v(m (16.9)

is called an autoregressive moving average (ARMA) model.

It is obvious that a model based on the time series only, without taking
any relevant input variable into account, cannot be very accurate. Therefore,
more accurate models are constructed by incorporating one (or more) input
variable(s) into the model. This input w(k) is called an ezogenous input. With
these considerations, the time series models in Fig. 16.11 can be extended by
adding an “X” for exogenous input. To extend a moving average time series
model with an exogenous input is highly uncommon. Thus, something like
“MAX?” is rarely used.

Figure 16.12 gives an overview of the most important linear input/output
models, which are briefly discussed in the following. All models on the left
hand side of Fig. 16.12 are denoted by AR... and belong to the class of
equation error models. Their characteristic is that the filter 1/4(g) is common
to both the deterministic process model and the stochastic noise model. All
models on the right hand side of Fig. 16.12 belong to the class of output error
models, which is characterized by a noise model that is independent of the
deterministic process model.

The autoregressive with ezogenous input (ARX)! model (Fig. 16.12) is an
extended AR model:

_ B(qg) 1
v(k) = T i@

Here the term “autoregressive” is related to the transfer function from the in-
put u(k) to the output y(k) as well as to the noise transfer function from v(k)
to y(k). Thus, the deterministic and the stochastic part of the ARX model
possess an identical denominator dynamics. For a more detailed discussion
refer to Sect. 16.5.1.

! In a considerable part of the literature and in older publications in particular,
the ARX model is called an “ARMA” model to express the fact that both a
numerator and a denominator polynomial exist. However, as discussed above,
this book follows the current standard terminology established in [233], where
ARMA stands for the time series model in (16.9).

u(k) + (k). (16.10)
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Fig. 16.12. An overview of common linear dynamic models
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The autoregressive moving average with exzogenous input (ARMAX) model
(Fig. 16.12) is an extended ARMA model:

_ B@ o)
vk) = 20+ g

As for the ARX model, the ARMAX model assumes identical denominator
dynamics for the input and noise transfer functions. However, the noise trans-
fer function is more flexible owing to the moving average polynomial. For a
more detailed discussion refer to Sect. 16.5.2.

The autoregressive autoregressive with exogenous input (ARARX) model
(Fig. 16.12) is an extended AR model:

Blg) 1
VB = 39" ® * D ®
This is an ARX model with additional flexibility in the denominator of the
noise transfer function. Thus, instead of an additional moving average filter
C(q) as in the ARMAX model, the ARARX model possesses an additional au-
toregressive filter 1/D(q). For a more detailed discussion refer to Sect. 16.5.3.

Just to complete this list the autoregressive autoregressive moving average
with ezogenous input (ARARMAX) model can be defined as

(k) = B(q) C(q)
4 Alq) D(9)A(q)

Because this model type is hardly used it is not discussed in more detail.

All these AR... models share the A(q) polynomial as denominator dynam-
ics in the input and noise transfer functions. They are also called equation
error models. This corresponds to the fact that the noise does not directly
influence the output y(k) of the model but instead enters the model before
the 1/A(q) filter. These model assumptions are reasonable if indeed the noise
enters the process early, so that its frequency characteristic is shaped by the
process dynamics. If, however, the noise is primarily measurement noise that
typically directly disturbs the output, the so-called output error models are
more realistic.

The output error models are characterized by noise models that do not
contain the process dynamics. Thus, the noise is assumed to influence the
process output directly. The terminology of these models does not follow
the rules given above for an extension of the time series models. Rather,
the point of view changes from time series models (where the noise model
is in the focus) to input/output models (where the attention turns to the
deterministic input).

The most straightforward input/output model is the output error (OE)
model (Fig. 16.12):

yll) =i o (q§ ulk) 4 uk).

u(k) +

u(k). (16.11)

(16.12)

u(k) + v(k). (16.13)

(16.14)
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This OE model is one special model in the class of output error models.
Unfortunately it is difficult to distinguish between the class of output error
models and this special output error model in (16.14) by the name. Therefore,
it must become clear from the context whether the special model or the model
class is referred to. To clarify this confusion a little bit, the abbreviation OE
always refers to the special output error model in (16.14). In contrast to the
ARX model, white noise enters the OE model directly without any filter. For
a more detailed discussion refer to Sect. 16.5.4.

This OE model can be enhanced in flexibility by filtering the white
noise through an ARMA filter. This defines the Boz-Jenkins (BJ) model

(Fig. 16.12):
c
v = Foub) + 5

The BJ model relates to the ARARMAX model as the OE model relates
to the ARX model. The input and noise transfer functions are separately
parameterized and therefore independent. The special cases of a BJ model
C(g) = 1 or D(¢g) = 1 do not have special names. For a more detailed
discussion refer to Sect. 16.5.5.

Finally, a quite different model belongs to the output error model class,
as well. The finite impulse response (FIR) model is defined by (Fig. 16.12)

y(k) = Blgyu(k) + v(k). (16.16)

The FIR model is an OE or an ARX model without any feedback, that is,
F(q) =1 or A(g) = 1, respectively. As an extension of the FIR model the
orthonormal basis functions (OBF) model is also of significant practical in-
terest. However, the OBF model does not fit well in the framework presented
here. The FIR and OBF models are described in detail in Sect. 16.6. ~

At a first sight all these different model structures may be quite con-
fusing. However, it is sufficient to remember the ARX, ARMAX, OE, FIR,
and OBF models for an understanding of the rest of this book. Nevertheless,
all concepts discussed in this chapter are of fundamental importance. Fig-
ures 16.13-16.16 illustrate the described linear models from different points
of view. Table 16.2 summarizes the simplifications that lead from the general
model to the specific model structures.

Note that for the sake of simplicity the processes and models are assumed
to possess no dead time. However, in any equation a dead time dTy can
easily be introduced by replacing the input u(k) with the d steps delayed input
u(k — d). Furthermore, it is assumed that the processes and models have no
direct path from the input to the output (i.e., they are strictly proper), so
that u(k) does not immediately influence y(k). Thus, terms like bou(k) do
not appear in the difference equations. This assumption is fulfilled for almost
any real-world process.

(k). (16.15)
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Fig. 16.13. Classification of linear models according to finite impulse response
(FIR) and infinite impulse response (IIR) filters
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Fig. 16.14. Classification of linear models according to equation error and output
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Fig. 16.15. Classification of linear models according to input/output and time
series models
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Fig. 16.16. Classification of linear models according to noise properties. The box
entitled “process dynamics” refers to noise filter, which include the process denom-
inator dynamics 1/A4(q)
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Table 16.2. Common linear models

Model structures Model equations

MA y(k) = C(q) v(k)

AR y(k) = 1/D(q) v(k)

ARMA y(k) = C(q)/D(q) v(k)

ARX y(k) = B(q)/A(q) u(k) + 1/A(q) v(k)
ARMAX y(k) = B(g)/A(q) u(k) + C(q)/A(q) v(k)
ARARX y(k) = B(q)/A(q) u(k) + 1/D(q)A(q) v(k)
ARARMAX y(k) = B(q)/A(q) w(k) + C(q)/D(q)A(q) v(k)
OE y(k) = B(q)/F(q) u(k) + v(k)

BJ y(k) = B(g)/F(q) u(k) + C(q)/D(q) v(k)
FIR y(k) = B(g) u(k) + v(k)

16.3.2 Optimal Predictor

Probably the most common application of a model is forecasting the future
behavior of a process. Two cases have to be distinguished: simulation and
prediction. If the response of the model to an input sequence has to be cal-
culated while the process outputs are unknown, this is called simulation. If,
however, the process outputs are known up to some time instant, say k — 1,
and it is asked for the model output [ steps in the future, this is called pre-
diction. Very often one is interested in the one-step prediction, i.e., | = 1,
and if nothing else is explicitly stated in the following prediction will mean
one-step prediction. Figures 16.17 and 16.18 illustrate the difference between
simulation and prediction; see also Sects. 1.1.2 and 1.1.3.

Simulation. It is obvious from Fig. 16.17 that simulation is fully determin-
istic:

i(k) = G(q)u(k). (16.17)

Thus, the noise model H(q) seems irrelevant for simulation. Note, however,
that the noise model H(q) influences the estimation of the parameters in
G(g) and therefore it affects the simulation quality although H(q) does not
explicitly appear in (16.17).

Because the process output is unknown, no information about the distur-
bances is available. In order to get some “feeling” how the disturbed process
output qualitatively may look, it is possible to generate a white noise signal
w(k) with proper variance by a computer [233], to filter this signal through
the noise filter H(q), and to add this filtered noise to the deterministic model
output

§(k) = G(gu(k) + H(qw(k). (16.18)
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Fig. 16.17. For simulation, only the inputs are known. No information about the
real process output is available

Note, however, that (16.18) is just a better qualitative output than
(16.17). The smaller simulation error can be expected from (16.17) since
w(k) is a different white noise signal than the original but not measurable

v(k).

Prediction. In contrast to simulation, for prediction the information about
the previous process output can be utilized. Thus, the optimal predictor
should combine the inputs and previous process outputs in some way. So
the optimal linear predictor can be defined as the linear combination of the
filtered inputs and the filtered outputs

i(k|lk — 1) = sou(k) + s1u(k — 1) + ...+ spsu(k — ns)
+tylk—1) + ...+ tuy(k —nt) (16.19)

or
(klk —1) = S(qu(k) + T(q)y(k). (16.20)

Note that the filter T(g) does not contain the term tg since of course the
value y(k) is not available when predicting §(k|k — 1). For most real-world
processes s = 0 as well, because the input does not instantaneously influence
the output, i.e., the model is strictly proper.

The term S(q)u(k) contains information about the deterministic part of
the predictor while the term T'(g)y(k) introduces a stochastic component into
the predictor since only y(k) is disturbed by noise.

The following question arises: What are the best filters S(q) and T'(¢)?
More exactly speaking, which filters result in the smallest squared prediction
error (prediction error variance)? It can be shown that the optimal predictor

is [233]

gklk —1) = %%u(k) P (1 = F?ﬁ) y(k) (16.21)
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Fig. 16.18. a) One-step prediction and b) two-step prediction. The expression “|k—
1”7 means “on the information available at time instant £—1". For prediction, besides
the inputs the previous process outputs are known. Note that if the prediction
horizon [ becomes very large the importance of the information about the previous
process outputs decreases. Thus, as I — oo prediction approaches simulation; see
Fig. 16.17

or
H(q)j(klk —1) = G(g)u(k) + (H(g) — 1) y(k). (16.22)

Thus, $(q) = G(q)/H(q) and T(q) = 1 — 1/H(q).
It is very helpful to discuss some special cases in order to illustrate this
optimal predictor equation.

o ARX model: G(q) = B(q)/A(q) and H(q) = 1/A(qg). Therefore, the optimal
predictor for an ARX model is :

g(klk = 1) = B(q)u(k) + (1 - A(g) y(k) - (16.23)

Thus, the inputs are filtered through the B(g) polynomial and the process
outputs are filtered through the 1 — A(g) polynomial. Consequently, the
predicted model output g(k|k — 1) can be generated by applying simple
moving average filtering. Because an ARX model implies correlated dis-
turbances, namely white noise filtered through 1/4(q), the process output
contains valuable information about the disturbances. This information al-
lows one to make a prediction on the actual disturbance at time instant k,
which is implicitly performed by the term ((1 — A(g))y(k).

o ARMAX model: G(q) = B(q)/A(q) and H(q) = C(q)/A(q). Therefore, the
optimal predictor for an ARMAX model is

Gkl —1) = g%g;u(m i (C—@#) y(k). (16.24)

This equation is much more difficult than the ARX predictor. A charac-
teristic is that both the input and the process output are filtered through
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filters with the same denominator dynamics C'(g). Note that the ARMAX
predictor contains the ARX predictor as the special case C'(g) = 1.

OF model: G(q) = B(q)/A(q) and H(g) = 1. Therefore, the optimal pre-
dictor for an OE model is

- B(q)

iklk = 1) = ZeSu(k). (16.25)
This, however, is exactly a simulation; see (16.17)! No information about
the process output enters the predictor equation. The reason for this ob-
viously lies in the noise filter H(gq) = 1. Intuitively this can be explained
as follows. The term T'(q)y(k) in (16.20) contains the information about
the stochastic part of the model. If the process is disturbed by unfiltered
white noise, as is assumed in the OE model, there is no correlation between
disturbances n(k) at different times k. Thus, knowledge about previous dis-
turbances that is contained in y(k) does not help to predict into the future.
Thus, the simulation of the model is the optimal prediction in the case of
an OFE model. At first sight, it seems strange to totally ignore the knowl-
edge of y(k). However, an incorporation of the white noise corrupted y(k)
into the predictor would deteriorate the performance.

16.3.3 Some Remarks on the Optimal Predictor

It is important to make some remarks on the optimal predictor which have
been omitted above for easier understanding.

e Equation (16.21) for the optimal predictor can be derived as follows. The
starting point is the model equation

y(k) = G(g)u(k) + H(q)uv(k). (16.26)

The optimal predictor should be capable of extracting all information out
of the signals. Thus, the prediction error, i.e., the difference between the
process output y(k) and the predicted output g(k|k — 1), should be equal
to the white noise v(k), since this is the only unpredictable part in the
system:

v(k) = y(k) — §(k[k —1). (16.27)
This equation can be used to eliminate v(k) in (16.26). Then the following
relationship results:

u(k) = G(ayu(k) + H(g) (y(k) — g(klk — 1)) . (16.28)

If in this equation §(k|k — 1) is isolated the optimal predictor in (16.21)
results. The optimal predictor thus leads to white residuals. Therefore, an
analysis of the spectrum of the real residuals can be used to test whether
the model structure is appropriate.
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Fig. 16.19. OE and ARX predictor for a process with integral behavior. An OE
model of the process q/(¢ — 1) disturbed by white output noise is assumed to be
identified to q/(g—0.995). The optimal OE predictor in (16.25) simulates the process

e It has been demonstrated above that the optimal predictor for ARX models
includes previous inputs and process outputs while the optimal predictor
for OE models includes only previous inputs. This statement is correct if
the transfer functions G(g) and H(qg) are identical with the model. However,
if the model only approximates the process, as is the case in all real-world
applications, this statement is not necessarily valid any more. Consider,
for example, a process with integral behaviour G(¢) = Kq/(¢— 1) and ad-
ditive white measurement noise at the output. Assume that an OE model
is applied, which indeed is the correct structure for these noise properties,
and the parameter K is not estimated exactly. Then, for this OE model,
the ARX predictor may yield better results than the OE predictor. The
explanation for this fact is that the error of the simulated output obtained
by the OE predictor increases linearly with time proportional to the esti-
mation error in K, while the ARX predictor is based on process outputs
and thus cannot “run away” from the process. Figure 16.19 compares the
behavior of an OE and an ARX predictor for this process.

Because the model parameters have not been identified exactly the model
implements no integrator but a first order time lag behavior (with a large
time constant). Thus, the OE predictor quality becomes worse as time
proceeds. In contrast, if the ARX predictor in (16.49) is utilized for the
OFE model the prediction always remains close to the true process because
it is also based on process outputs. The price to be paid is the introduction
of the disturbances into the prediction since the process output is corrupted
by noise.

Note that this example illustrates an extreme case since the investigated
process is not stable. Nevertheless, in practice even for stable processes it
can be advantageous to use the ARX predictor for models belonging to
the output error class. This is because non-modeled nonlinear effects can
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lead to significant deviations between the process and the simulated model
output, while a one-step prediction with the ARX predictor will follow the
operating point better. Generally, the ARX predictor can be reasonably
utilized for output error models if the disturbances are small. Thus, there
exists some kind of tradeoff between the wrongly assumed noise model when
using the ARX predictor and the model/process mismatch when using the
OE predictor.

e The optimal predictor in (16.21) is only stable if the noise filter H(g) is
minimum phase. Stability of the predictor is a necessary condition for the
application of the prediction error methods (see next section). If H(g) were
non-minimum phase, 1/H(g) and thus the predictor would be unstable.
However, then the noise filter could be replaced by its minimum phase
counterpart, i.e., the conjugate complex H*(q) = H(g™'), because the
purpose of the filter H(q) is merely to shape the frequency spectrum of the
disturbance n(k) by filtering v(k). But the spectrum of the disturbance
n(k) is determined only by |H(g)|?, which is equal to |H|* = H(q)H"(q)
(spectral factorization). Thus, both filters H(g) and H*(g) result in the
same frequency shaping, and therefore the filter that is stable invertible
can be selected for the optimal predictor.

e Another assumption not yet mentioned is made in the optimal predictor
equation (16.21). The influence of the initial conditions is neglected. Con-
sider, for example, an OE model

y(k) = biu(k —1) + ... + bpu(k —m)

—aylk—1)— ... —any(k—m). (16.29)
For this model m initial conditions have to be assumed; at time k = 0
these are the values of y(—1),...,y(—m). Typically, these initial conditions

are set to zero. This assumption is reasonable since for stable systems
the initial conditions decay exponentially with time. Strictly speaking, the
optimal predictor in (16.21) is only the stationary optimal predictor. If
the initial conditions were to be taken into account the optimal predictor
would become time-variant and would asymptotically approach (16.21).
This relationship is well known between the Kalman filter, which represents
the optimal time-variant predictor considering the initial conditions and its
stationary solution, the Luenberger observer, which is valid only as time —
0. Nevertheless, since the initial conditions decay rapidly, in practice the
stationary counterpart, i.e., the optimal predictor in (16.21), is sufficiently
accurate and much simpler to deal with.

16.3.4 Prediction Error Methods

Usually the optimal predictor is used for measuring the performance of the
corresponding model. The prediction error is the difference between the de-
sired model output (= process output) and the one-step prediction performed
by the model

I
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e(k) = y(k) — g(klk—1). (16.30)
In the following, the term prediction error is used as a synonym for one-

step prediction error. With the optimal predictor in (16.21) the prediction
error becomes

1 G(g)
e(k) = — =
(¥) V() = ).
For example, an OE model has the following prediction error: e(k) =
y(k) — G(q)u(k). Most identification algorithms are based on the minimiza-
tion of a loss function that depends on this one-step prediction error. Al-
though this is the most common choice it can be reasonable to minimize
another error measure. For example, predictive control algorithms utilize a
model to predict a number of steps, say [, into the future. In this case, the
performance can be improved by minimizing the error of an I-step prediction
e(k) = y(k) —g(k|k — ) where [ is the prediction horizon [230, 340, 341, 411].
Because the computation of such a multi-step predictor becomes more and
more involved for larger prediction horizons !, even for model-based pre-
dictive control typically the one-step prediction error in (16.30) is used for
identification.
For reasons discussed in Sect. 2.3, the sum of squared prediction errors is
usually used as the loss function, i.e., with N data samples

(16.31)

(16.32)

It is discussed in Sect. 2.3.1 that this choice is optimal (in the maximum
likelihood sense) if the noise is Gaussian distributed. Another property of the
sum of squared errors loss function is that the parameters of the ARX model
structure can be estimated by linear optimization techniques; see Sect. 16.5.1.

Note that a sensible minimization of the loss function in (16.32) requires
the predictor to be stable, which in turn requires that G(gq) is stable and H(q)
is minimum phase. Otherwise, the mismatch between process and model due
to different initial values would not decay exponentially (as in the stable
case); rather they would influence the minimization procedure decisively.

The loss function in (16.32) can be extended by filtering the prediction
errors through a linear filter L(g). Since the unfiltered prediction error is,
(see (16.31))

elk) = g5 W) — Glau(h) (16.33)
the filtered prediction error ey can be written as
er() = 5100 (k) — Gla)ulh) (16.34)

Obviously, the filter L(g) has the same effect as the inverse noise model
1/H(g). Thus, the filter L(g) can be fully incorporated into the noise model
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H(q) or vice versa. The understanding of this relationship is important for
some of the identification algorithms discussed in the following sections. For
more details about this relationship refer to Sect. 16.7.4.

16.4 Time Series Models

A time series is a signal that evolves over time?, such as the Dollar/Euro
exchange rate, the Dow Jones index, the unemployment rate in a country,
the world’s population, the amount of rain fall in a particular area, or the
sound of a machine received with a microphone. A characteristic of all time
series is that the current value is usually dependent on previous values. Thus,
a dynamic model is required for a proper description of a time series. Fur-
thermore, typically the driving inputs, i.e., the variables that influence the
time series, are not known, are not measurable, or are so huge in number
that it is not feasible to include them in the model. It is no coincidence that
the typical examples for time series listed above are mostly non-technical.
Often in engineering applications the relationships between different quanti-
ties are quite well understood, and at least some knowledge about the basic
laws is available. Then it is more reasonable to build a model with deter-
ministic inputs and possibly additional stochastic component. In economy
and social sciences the dependencies between different variables are typically
much more complex, and thus time series modeling plays a greater role in
these disciplines.

Because time series models (as defined here) do not take any deterministic
input into account, the task is simply to build a model for the time series with
the information about the past realization of this time series only. Because
no external inputs u(k) are considered, it is clear that such a model will be of
relatively low quality. Nevertheless it may be possible to identify a model that
allows short term predictions (typically one-step predictions) with sufficient
accuracy or which allows to gain insights about the underlying process.

Since no inputs are available, time series models are based on the following
idea. The time series is thought to be generated by a (hypothetical) white
noise signal, which drives a dynamic system. This dynamic system is then
identified with the time series data. The main difficulty is that the input of
this system, that is, the white noise signal, is unknown. Since this chapter
deals with linear system identification the dynamic system is assumed to be
linear, and the following model of the time series results (see also Fig. 16.9):

y) = H@w() = 530(0),

where y(k) is the time series and v(k) is the artificial white noise signal. In
the following three sections two special cases of (16.35) and finally the general

(16.35)

2 In some cases the signal may not depend on time but rather on space (e.g. in
geology) or some other quantity.
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time series model in (16.35) are briefly discussed. The model (16.35) can be
further extended by an integrator to deal with non-stationary processes. For
more details refer to [47].

16.4.1 Autoregressive (AR)

The autoregressive time series model shown in Fig. 16.20 is very common
since it allows one to shape the frequency characteristics of the model with a
few linear parameters. In many technical applications of time series model-
ing one is interested in resonances, i.e., weakly damped oscillations at certain
frequencies which may be hidden under a high noise level. Then an AR (or
ARMA) model of the time series is a powerful tool for analysis. An oscillation
is represented by a weakly damped conjugate complex pole pair in 1 /D(q).
Compared with other tools for frequency analysis such as a Fourier trans-
form, an AR (or ARMA) model does not suffer from leakage effects due to
a discretization of the frequency range. Rather, AR (or ARMA) models, in
principle, allow one to determine frequencies and amplitudes with arbitrary
accuracy. In practice, AR (or ARMA) models are usually preferred if the
number of considered resonances is small or a smoothed version of the spec-
trum is desired because then the order of the models can be chosen reasonably
low and the parameters can be estimated accurately.
The time series is thought to be constructed by filtering white noise v(k):
1
y(k) D(q)’u(k) . (16.36)
The difference equation makes the linear parameterization of the AR model
obvious

yk) = —diy(k —1) — ... — dmy(k —m) +v(k). (16.37)
The prediction error simply becomes
e(k) = D(q)y(k) - (16.38)

By taking the prediction error approach, the parameter estimation is a
least squares problem, which can be easily solved. It corresponds to the esti-
mation of an ARX model without numerator parameters, i.e., B(g) =1 (see
Sect. 16.5.1 for details). Another common way to estimate an AR model, is
to correlate (16.37) with y(k — k). For x > 0 this results to

(16.39)

because the previous outputs y(k — k) do not depend on the current noise
v(k), ie., E{y(k — k)v(k)} = 0. For & = 0,—1,... additional, increasingly

corry, (k) = —dicorryy(k — 1) — ... — dpcorryy (s —m)

wk) 1 K

Fig. 16.20. AR model
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complex terms like o2, dyo?, etc. appear in (16.39) where o® is the noise
variance. Usually only the equations for k£ > 0 are used to estimate the noise
variance and the parameters d;. For these different values of &, (16.39) are
called the Yule- Walker equations. In a second step, these Yule-Walker equa-
tions are solved by least squares; compare this with the COR-LS approach
in Sect. 16.5.1.

The Yule-Walker equations are the most widely applied method for AR
model estimation. Generally, most time series modeling is based on the esti-
mation of the correlation function. This is a way to eliminate the fictitious
unknown white noise signal v(k) from the equations. The correlation function
represents the useful information contained in the data in a compressed form.

16.4.2 Moving Average (MA)

For the sake of completeness the moving average time series model (Fig. 16.21)
will be mentioned here, too. It has less practical significance in engineering
applications because a moving average filter does not allow one to model oscil-
lations with a few parameters like an autoregressive filter does. Furthermore,
in contrast to the corresponding deterministic input/output model (the FIR
model), the MA model is nonlinear in its parameters if the prediction error
approach is taken.
The MA model is given by

y(k) = Clq)v(k). (16.40)

The difference equation makes the nonlinear parameterization of MA model
more obvious:

y(k) =v(k) + vk —1) — ...+ epu(k —m). (16.41)

Since v(k—1) are unknown, in order to estimate the parameters ¢;, the v(k—t)
have to be approximated by a previously built model. Thus, the approximated
U(k — i), which replace the true but unknown v(k — ) in (16.37), themselves
depend on the parameters of a model estimated a priori. This relationship
can also be understood by considering the prediction error

e(k) = ——y(k) (16.42)
or
e(k) = —cie(k—1)—...—cme(k—m) + y(k). (16.43)

More clever algorithms exist to estimate MA models more efficiently than via
a direct minimization of the prediction errors; see [47].

k (3
wk) c@ B

Fig. 16.21. MA model
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16.4.3 Autoregressive Moving Average (ARMA)

The combination of an autoregressive part and a moving average part en-
hances the flexibility of the AR model. The resulting ARMA model shown
in Fig. 16.22 is given by

_ Clo)
y(k) = D) v(k). (16.44)
The difference equation is
ylk)=—-diy(k—-1)— ... —dny(k —m)
+wolk) +evk—1)— ...+ eqpulk—m). (16.45)

The prediction error becomes
D(q)

e(k) = F@-)-y[k) (16.46)
| or
e(k) = —cre(k—1) — ... — cpe(k —m)
+y(k) +diy(k—1) + ... +dny(k —m). (16.47)

For estimation of the nonlinear parameters in the ARMA model, the
following approach can be taken; see Sect. 16.5.2. In the first step, a high
order AR model is estimated. Then the residuals e(k) in (16.38) are used
as an approximation of the white noise v(k). With this approximation the
parameters ¢; and d; of an ARMA model are estimated by least squares.
Then iteratively the following two steps are repeated: (i) approximation of
v(k) by (16.47) with the ARMA model obtained in the previous iteration,
(ii) estimation of new a new ARMA model utilizing the approximation for
v(k) from step (i). This two-step procedure avoids the direct nonlinear opti-
mization of the parameters and it is sometimes called the Hannan-Rissanen
algorithm [47]. Other advanced methods are again based on the correlation
idea introduced in Sect. 16.4.1, leading to the innovations algorithm or the
Yule-Walker equations for ARMA models. The best (asymptotically efficient,
compare Sect. B.7) estimators of AR, MA, and ARMA models are based on
the maximum likelihood method [47]. However, this requires the application
of a nonlinear optimization technique such as the Levenberg-Marquardt al-
gorithm; see Chap. 4. Good initial parameter values for a local search can be
obtained by any of the above strategies.

v(E) c(q) (k)
_aavdng] SR ] FeR
Dig)

Fig. 16.22. ARMA model
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16.5 Models with Output Feedback

This section discusses linear models with output feedback. The models in
this class by far are the most widely known and applied. Alternative linear
models are described in the subsequent section and either do not employ
any feedback or the feedback path is independent of the estimated parame-
ter. In the following subsections on model with output feedback, the model
structures are introduced together with appropriate algorithms for parame-
ter estimation. To fully understand these algorithms, knowledge of the linear
and nonlinear local optimization techniques discussed in Part I is required.

16.5.1 Autoregressive with Exogenous Input (ARX)

The ARX model is by far the most widely applied linear dynamic model.
Usually an ARX model is tried first and only if it does not perform satis-
factory are more complex model structures examined. This is not the case
because the ARX model would be especially realistic and would match the
structure of many real-world processes. Rather, the popularity of the ARX
model comes from its easy-to-compute parameters. The parameters can be
estimated by a linear least squares technique since the prediction error is lin-
ear in the parameters. Consequently, a reliable recursive algorithm for online
use, the RLS, exists as well; see Sect. 16.8.1.
The ARX model is depicted in Fig. 16.23, and is described by

A(qy(k) = Blq)u(k) + v(k). (16.48)
The optimal ARX predictor is
g(klk—1) = B(q)u(k) + (1 — A(q))y(k), (16.49)
which can be written as
Glklk —1) =bu(k —1) + ... + bpu(k —m)
—amylk—1)— ... —any(k —m). (16.50)

assuming deg(A) = deg(B) = m. Note that contrary to the continuous time
process description, in discrete time the numerator and denominator polyno-
mials usually have the same order.

The ARX predictor is stable (it possesses no feedback!) even if the A(q)
polynomial and therefore the ARX model is unstable. This fact allows one to
model unstable processes with an ARX model. However, the plant has to be
stabilized in order to gather data. It is a feature of all equation error models

v(k)

ulk) 1 k)
—>  B(q) D =

Fig. 16.23. ARX model
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that the A(q) polynomials only appear in the numerator of their predictors,
and thus the predictors are stable even if A(q) is unstable.
With (16.49) the prediction error of an ARX model is

e(k) = A(Q)y(k) — B(q)u(k). (16.51)

The term A(q)y(k) acts as a whitening filter on the correlated disturbances.
The measured output y(k) can be split into two parts: the undisturbed process
output yu(k) and the disturbance n(k), where y(k) = yu(k) + n(k). Since
n(k) = 1/A(q)v(k) with v(k) being white noise A(q)y(k) = A(g)yu(k) +v(k).
Thus, the filter A(g) in (16.51) makes the disturbances and consequently e(k)
white.

As can be seen from Fig. 16.23, one characteristic of the ARX model
is that the disturbance, i.e., the white noise v(k), is assumed to enter the
process before the denominator dynamics A(g). This fact can be expressed
in another way by saying that the ARX model has a noise model of 1/A(g).
So the noise is assumed to have denominator dynamics identical to those of
the process. This assumption may be justified if the disturbance enters the
process early, although even in this case the disturbance would certainly pass
through some part of the numerator dynamics B(q) as well. However, most
often this assumption will be violated in practice. Disturbances at the process
output, as assumed in an OE model in Sect. 16.5.4, are much more common.

Figure 16.24 shows three different configurations of the ARX model. Note
that all three configurations represent the same ARX model, but they suggest
a different interpretation. The true process polynomials are denoted as B (q)
and A(q), while the model polynomials are denoted as B(g) and A(g).

Figure 16.24a represents the most common configuration. The prediction
error e(k) for an ARX model is called equation error because it is the dif-
ference in the equation e(k) = A(q)y(k) — B(q)u(k); see (16.31). The term
“equation error” stresses the fact that it is not the difference between the
process output y(k) and B(q)/A(q)u(k), which is called the output error;
see also Sect. 16.5.4. Considering Fig. 16.24a, it is obvious that if the model
equals the true process, i.e., B(q) = B(q) and A(q) = A(qg), the equation er-
ror e(k) = A(g)n(k) = A(g)n(k). Thus, if the assumption made by the ARX
model, namely that the disturbance is white noise filtered through 1/A(q), is
true, then the equation error e(k) is white noise since n(k) = 1/A(q)v(k). For
each model structure the prediction errors have to be white if all assumptions
made are valid because then all information is exploited by the model.

Figure 16.24b depicts another configuration of the ARX model based on
the predictor equation. With the ARX predictor in (16.49) the same equation
error as in Fig. 16.24a results. Figure 16.24b can schematically represent any
linear model by implementing the corresponding optimal predictor.

Figure 16.24c relates the ARX model to the OE model; see Sect. 16.5.4.
This representation makes clear that the equation error e(k) is a filtered ver-
sion of the output error epr(k). Note that eor(k) and jogr(k), respectively,
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Fig. 16.24. Different representation schemes for the ARX model: a) equation er-
ror configuration, b) predictor configuration, ¢) pseudo-parallel configuration with
filtering of the error signal [81]. All configurations realize the same ARX model

denote the output error and the output of an OE model; thus they are differ-
ent from the prediction error e(k) and the predicted output (k) of an ARX
model. Figure 16.24a, b and c¢ represent just different perspectives of the
same ARX model, and shall help us to better understand the relationships
between the different model structures.

Least Squares (LS). The reason for the popularity of the ARX model is
that its parameters can be estimated by a linear least squares (LS) technique.
For N available data samples the ARX model can be written in the following
matrix/vector form with N — m equations for k = m +1,..., N where g is
the vector of model outputs while y is the vector of process outputs that are
the desired model outputs: i

bl |
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g=X0 (16.52)
with
F T
g(m + 1) y(m+1) :
i g(m +2) y(lm+1) b
= g y Y= : , g= a | (16.53)
y(N) y(N) E
Lam |
—y(rfn)1 fy(é) ‘u(ﬂ@)1 e u(l)
— aiis = u(r e ou(2
X y(’nf +1) y_( ) u( n_+ ) (_ ) (16.54)

—y(f\; —1) - —y(N- —m) u(N-— 1) - u(N = m)

If the quadratic loss function in (16.32) is minimized, the optimal param-
eters of the ARX model can be computed by LS as (see Chap. 3)

f=(xTX)" X"y (16.55)

For an computation of the estimate in (16.55) the matrix X TX has to be
non-singular. This is the case if the input (k) is persistently exciting. The
big advantage of the ARX model is its linear-in-the-parameters structure.
All features of linear optimization techniques apply, such as a fast one-shot
solution that yields the global minimum of the loss function. The main draw-
back of the ARX model is that its noise model 1/A(q) is unrealistic. Additive
output noise is much more common. The difficulties arising from this fact are
discussed next. For more details concerning the least squares solution refer
to Chap. 3.

Consistency Problem. The ARX model and a more realistic process de-
scription are compared in Fig. 16.25. Because often the real process is not
disturbed, as assumed by the ARX model, some difficulties can be expected.
Indeed it can be shown that if the process does not meet the noise assump-
tion made by the ARX model, the parameters are estimated biased and non-
consistent. A bias means that the parameters systematically deviate from
their optimal values, i.e., the parameters are systematically over- or underes-
timated. Non-consistency means that this bias does not even approach zero
as the number of data samples N goes to infinity; see Sect. B.7 for more
details on the bias and consistency definitions.

Even worse, the errorbars calculated from the estimate of the covariance
matrix of the parameter estimate (see Chap. 3) may indicate that the esti-
mate is quite accurate even if the bias is very large [81]. The reason for this
undesirable behavior is that the derivations of many theorems about the LS
in Chap. 3 assume a deterministic regression matrix X. However, as can be
seen in (16.54), the regression matrix X contains measured process outputs
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ARX model k)
u(k) 1 k;
Real process ®
n
u(k) 1 0]
— B(g) > @

Fig. 16.25. An ARX model assumes a noise model 1/4(g), while more realistically
a process is disturbed at the output by a noise n(k), which can be white noise v(k)
or colored noise, e.g., n(k) = C(q)/D(q)v(k)

y(k) that are non-deterministic owing to the disturbances. Thus, the covari-
ance matrix cannot be calculated by (3.34) and consequently the errorbar
cannot be derived as shown in Sect. 3.1.2.

Because consistency is probably the most important property of any es-
timator, several strategies have been developed to avoid the non-consistent
estimation for an ARX model. The idea of most of these approaches is to
retain the linear-in-the-parameters property of the ARX model since this is
its greatest advantage over other model structures.

Next, two such strategies are presented. The first strategy offers an al-
ternative to the prediction error method, and the parameters are estimated
with the help of instrumental variables. The idea of the second method is to
work with correlation functions of the measured signals instead of the signals
themselves.

Another alternative is to choose more general model structures such as
ARMAX or OE that are nonlinear in their parameters and to develop algo-
rithms that allow one to estimate the nonlinear parameters by the repeated
application of a linear least squares technique. These approaches are discussed
in the sections on the corresponding model structures.

Instrumental Variables (IV) Method. A very popular and simple rem-
edy against the consistency problem of the conventional ARX model estima-
tion is the instrumental variables (IV) method. It is an alternative to the
prediction error methods. The starting point is the difference e of the process
output y and the ARX model output § for all data samples in matrix/vector
form (see (16.52)) B

=y—X§6.

(16.56)

The least squares estimate that results from a minimization of the sum
of squared prediction errors (eTe — min) is

(=3

g = Y=

g=(x"x)"" xTy. (16.57)

.dﬂlﬁm

|
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The idea of the IV method is to multiply (16.56) with a matrix Z that has
the same dimension as the regression matrix X. The columns of Z are called
instrumental variables and are chosen by the user to be uncorrelated with the
noise, and therefore if all information is exploited they are also uncorrelated
with e. This means that Z"e = 0 because each row in ZT is orthogonal to e
(since they are uncorrelated and e has zero mean). Multiplying (16.56) with
ZT from the left yields

0=2"y-2"X8 (16.58)
and consequently
ZTy=2"Xe. (16.59)

If Z'X is non-singular, which is the case for persistent excitation and a
proper choice of Z, the IV estimate becomes

6=(2'x)" 2. (16.60)
Obviously, the IV estimate is equivalent to the LS estimate if Z T = X7 Note,
however, that the columns in X cannot be used as instrumental variables since
the columns containing y(k — i) regressors are disturbed by noise. Thus, X
is correlated with e, i.e., XTe # 0.

If the instrumental variables in Z are uncorrelated with the noise the IV
estimate is consistent. Although all choices of Z that fulfill this requirement
lead to a consistent estimate, the variance of the estimate depends strongly
on Z. Recall that the parameter variance is proportional to (ZTX)1; see
Sect. 3.1.1. Thus, the variance error is the smaller the higher is the correlation
between the instrumental variables in Z and the regressors in X.

Now, the question arises, how to choose Z? The answer is that the instru-
mental variables should be highly correlated with the regressors (columns in
X) in order to make the variance error small. For an easier understanding
of a suitable choice of Z it is convenient to reconsider the ARX regression

matrix in (16.54):

—y(m) —y(1) u(m) - u(l)
—ym+1) -+ —y(2) wulm-+1)--- w2

X= (16.61)

(N =1) -+ ~y(N —m) u(N = 1) - u(N = m)

The second half of X consists of delayed input signals, which are undisturbed.
Consequently, the best instrumental variables for these regressors are the
regressors themselves. However, for the first half of X the y(k — ©) regressors
cannot be used in Z because the uncorrelation conditions have to be met.
Good instrumental variables for the y(k —i) would be an undisturbed version
of these regressors. They can be approximated by filtering w(k) through a
process model. Thus, the following four-step algorithm can be proposed:
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1. Estimate an ARX model from the data {u(k),y(k)} by

Oprx = (X_Ti)_l X%y (16.62)
2. Simulate this model:
B
yulk) = —:(q—)u(k) (16.63)
Aq)

where B(q) and A(q) are determined by QARX.
3. Construct the following instrumental variables:

_yu(m) s _yu(l) u(m) - u(l)
7 —yu(m+1) -+ —yu(2) ulm+1)---  u(2)

—yu(N — 1) “yu(j\r = m) u(N — 1) I u(}\? = m)
4. Estimate the parameters with the IV method by
by = (2°Xx)7" 2%. (16.64)

Because the ARX model parameters estimated in the first step are biased
the ARX model may not be a good model of the process. Nevertheless, the
simulated process output y, (k) can be expected to be reasonably close to the
measured process output y(k) so that the correlation between Z and X is
high. The IV method can be further improved by repeating Steps 2-4. Then
in each iteration for the simulation in Step 2 the IV estimated model from
the previous Step 4 can be applied. This procedure converges very fast and
experience teaches that more than two or three iterations are not worth any
effort.

Ljung proposes performing the following additional five steps after going
through Steps 1-4 [233].

5. Compute the residuals:
erv(k) = A(q)y(k) — B(q)u(k) (16.65)

where B(q) and A(g) are determined by Ew.

6. Estimate an AR time series model for the residuals to extract the remain-
ing information from ey (k). The AR filter acts as a whitening filter, i.e.,
it is supposed to decorrelate the residuals. Remember that the residuals
should be as close to white noise as possible since then the process out-
put is fully explained by the model besides the unpredictable part of the
noise. The dynamic order of the AR time series model is chosen as 2m
(or ng +ny if n, = deg(A) and ny = deg(B) are not identical). Thus, the
following relationship is postulated:

en(h) = zvlk)  or L(aew (k) = vk (16.66)

with the white noise v(k). Refer to Sect. 16.4.1 for a more detailed de-
scription of the estimation of AR time series models.
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7. Filter the instruments calculated in Step 3 with the filter L(g) estimated
in Step 6:
yir(k) = L()yu(k)  and u®(k) = L(q)u(k). (16.67)

Filter the process output y*(k) = L(q)y(k) and the regressors (columns
in X) denoted as X*.
8. Construct the following instrumental variables: Z¥ =

“yf(m) o —ph() ubm) e ul()
—yM(T”‘Fl) _yhjf(g) u (TTT-+ 1)ess i .(2) -
—!,-'1{’4(4;\’ — 1) wis _ykf(j.\r_ m) ’UL(I\; —1) - uL(N.— m)
9. Estimate the parameters with the IV method by
By = (25" XY) 7 (29T (16.69)

Note that the instrumental variables introduced above are model depen-
dent, i.e., they are calculated on the basis of the actual model; see (16.63). A
simpler (but less effective) approach is to use model independent instruments.
This avoids the first LS estimation step, which computes a first model to gen-
erate the instruments. A typical choice for model independent instrumental
variables is

z=[u(k—1) -+ u(k—2m)]" . (16.70)

For more details about the IV method, the optimal choice of the instru-
mental variables, and its mathematical relationship to the prediction error
method, refer to [233, 360].

Correlation Functions Least Squares (COR-LS). The correlation func-
tion least squares (COR-LS) method proposed in [172] avoids the consistency
problem by the following idea. Instead of computing the LS estimate directly
from the signals u(k) and y(k) as is done in (16.52), the COR-LS method cal-
culates correlation functions first. The starting point is the linear difference
equation

y(k) = bu(k—1)+.. +bpulk—m)—ay(k—=1)—...—a,y(k—m) .(16.71)
This equation is multiplied by the term u(k — &):
u(k — k)y(k) = bu(k — k)u(k — 1) + ... + bpu(k — k)u(k —m)
—aqulk — g)y(k—1) — ... — anulk — &)y(k —m). (16.72)

Now the sum over N —k data samples, e.g., k = k+1,..., N, can be calculated
in order to generate estimates of correlation functions (see Sect. B.6)
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i u(k — r)y(k) = (16.73)
k=k+1
N N
b Y uk—r)u(k—1)+...+bm ¥ ulk—k)u(k-m)
k=r+1 k=r+1
N+ N
—ay Z ulk—r)ylk—1)—... —an Z u(k — &)y(k —m).
k=r+1 k=kr+1

Thus, this equation can be written as

cortyy (k) = by corryy(k — 1) + ... + by, corry, (K — m)
— a1 COrTyy(k — 1) — ... — @ COITyy (K — m). (16.74)

Obviously, (16.74) possesses the same form as (16.71), only the signals
u(k) and y(k) are replaced by the auto-correlation functions corry,(x) and
the cross-correlation functions corry, (k). Thus, the least squares estimation
in (16.55) can be applied on the level of correlation functions as well by

changing the the regression matrix and the output vector to X, . =

COITyy(0) +-- corry, (1l —m) —corry,(0) © —COITyy (1 — m)
corr,fu(l) S+ COTTyy (.2 - m) —corljw(l} . —(‘,orruy‘(2 —m) (16.75)
corrw.(l -1) .- corrwtl —m) -corru;,(l —-1)--- —corru;(l —m)
COrTyy (1)
g = | (16.76)
corr,;y (1)

where it is assumed that the correlation functions are used from xk =1 —m
to &k = l. Note that the number of terms in the sum that approximates the
correlation functions decreases as the time shift |s| increases. Therefore, as
l in (16.75) increases, the effect of the correlation decreases; in the extreme
case the sum contains only one term. Nevertheless, the full range of possible
correlation functions can be utilized, and then the number of rows in X ..
becomes N — 1.

Figures 16.26 and 16.27 show examples for the auto- and cross-correlation
functions. The simulated process follows the first order difference equa-
tion y(k) = 0.1u(k—1) + 0.9y(k —1). In Fig. 16.26 the input signal is
white. Therefore the auto-correlation function corry, (k) is a Dirac impulse.
In Fig. 16.27 the input signal is low-pass filtered and therefore the auto-
correlation function is wider. The cross-correlation functions of both figures
look similar; the one in Fig. 16.27 is smoother owing to the lower frequency
input signal. For non-positive time shifts the cross-correlations are about
zero since y(k) (for a causal process) does not depend on the future inputs
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Fig. 16.26. a) Auto-correlation and b) cross-correlation functions for a white input
sequence {u(k)} of 1000 data samples and time shifts x between —50 and 50. The
process used is y(k) = 0.1u(k — 1) + 0.9y(k — 1)
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Fig. 16.27. a) Auto-correlation and b) cross-correlation functions for a low fre-
quency input sequence {u(k)} of 1000 data samples and time shifts x between
—50 and 50. The process used is y(k) = 0.1u(k — 1) + 0.9y(k — 1). Compare with
Fig. 16.26

u(k — k), k < 0. Thus, the cross-correlation function in Fig. 16.26 jumps at
# = 1 on its maximum value and decays as the correlation between y(k) and
inputs k time steps in the past decreases. As the number of samples increases,
the random fluctuations in the correlation functions decrease. For an infinite
number of data samples the cross-correlation function in Fig. 16.26 would be
identical to the impulse response of the process. This makes the relationship
between the signals and the correlation functions obvious.

The drawback of the COR-LS method is the higher computational effort.
However, the correlation functions can possibly be exploited for estimation of
the dynamic process order as well; see Sects. 16.9 and B.6. So the additional
effort may be justified. The advantage of this COR-LS compared with the
conventional ARX method is that the regression matrix X consists of virtu-
ally deterministic values since the correlation with u(k — &) eliminates the
noise in y(k) because u(k) is uncorrelated with n(k). Consequently, the COR-
LS method yields consistent estimates. Experience shows that the COR-LS
method is well capable of attenuating noise, and it is especially powerful if
the noise spectrum lies in the same frequency range as the process dynamics
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and thus filtering cannot be applied to separate the disturbance for the signal L
[172]. |

16.5.2 Autoregressive Moving Average with Exogenous Input
(ARMAX)

The ARMAX model is probably the second most popular linear model after uk)

the ARX model. Some controller designs such as minimum variance control
are based on an ARMAX model and exploit the information in the noise
model [176]. Compared with the ARX, the ARMAX model is more flexible
because it possesses an extended noise model. Although with this extension
the ARMAX model becomes nonlinear in its parameters, quite efficient multi-
stage linear least squares algorithms are available for parameter estimation,
circumventing nonlinear optimization techniques. Furthermore, a straightfor- :
ward recursive algorithm (RELS) exists; see Sect. 16.8.1. T

The ARMAX model is depicted in Fig. 16.28, and is described by

A(q)y(k) = B(q)u(k) + Clg)v(k). (16.77) ,
The optimal ARMAX predictor is

b)
B(g) ( A(f;))
Glklk=1) = ==u(k) + [1—=—= | y(k). 16.78
klE-1) = Zesu(k) o) v (16.78)
The ARMAX predictor is stable even if the A(g) polynomial and therefore
the ARMAX model is unstable. However, the polynomial C(g) is required to
be stable.
With (16.78) the prediction error of an ARMAX model is
Alg) B(q) =
e(k) = k) — u(k). 16.79) -
(#) = v ® = g ® ( ,1, :
Studying the above equations reveals that the ARMAX model is an ex- @ 0
tended ARX model owing to the introduction of the filter C(q). If Clg) =1
the ARMAX simplifies to the ARX model. Owing to the additional filter > ) N
C(q) the ARMAX model is very flexible. For example, with C(q) = A(q) the — 5@ Alq) |
ARMAX model can imitate an OE model; see Sect. 16.5.4. s
l Fig. 16.29. ARMAX model in equation error configuration
v(k)

Because the noise filter C'(¢)/A(g) contains the model denominator dy-

Clg) i
namics, the ARMAX model belongs to the class of equation error models.
This is also obvious from the ARMAX configuration depicted in Fig. 16.29;
s = 1 - se(:i)Flg. 16}.124. I;;:l(q)ji——— A(éq), B(q) = B(qg), and C(¢) = C(q) the residuals
i — e(k) are white. s t iteni
5 i 820, SRR e us A(g)/C(q) acts as a whitening filter.

| (KA i
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Estimation of ARMAX Models. The prediction error (16.79) of an AR-
MAX model is nonlinear in its parameters owing to the filtering with 1/C(q).
However, the prediction error can be expressed in the following pseudo-linear
form:

C(g)e(k) = Alq)y(k) — B(q)u(k), (16.80)
which can be written as
e(k) = A(q)y(k) — Bg)u(k) + (1 — C(q)) e(k) - (16.81)

This results in the following difference equation:

e(k) =ay(k—1) +...+ amy(k —m)
—bu(k—1)—... = bpu(k —m)
—cre(k—1)—...—cme(k—m). (16.82)

The above equation formally represents a linear regression. However, because
the e(k — 1) that estimate the unknown v(k — i) (compare the first point in
Sect. 16.3.3) are not measured but have to be calculated from previous resid-
uals, the corresponding parameters are called to be pseudo-linear. Therefore,
(16.81) and (16.82) allow two approaches for parameter estimation. The most
straightforward approach is based on nonlinear optimization, while the sec-
ond strategy exploits the pseudo-linear form of the prediction error.

Nonlinear optimization of the ARMAX model parameters.

1. Estimate an ARX model A(q)y(k) = B(g)u(k) + v(k) from the data
{u(k), y(k)} by

Barx = (X_li) o KTE- (16.83)

2. Optimize the ARMAX model parameters with a nonlinear optimiza-

tion technique, e.g., with a nonlinear least squares method such as the
Levenberg-Marquardt algorithm; see Chap. 3. The ARX model param-
eters obtained in Step 1 can be used as initial values for the a; and b
parameters.
An efficient nonlinear optimization requires the computation of the gradi-
ents. The gradient of the squared prediction error e2(k) = (y(k) — 9(k))*
is —2e(k) 87(k)/6. Thus, the gradients of the predicted model output
have to be calculated. It is convenient to multiply (16.78) by C(g) in
order to get rid of the denominators:

C(q)j(klk — 1) = B(q)u(k) + (C(q) — Alg))y(k) - (16.84)
Differentiation of (16.84) with respect to a; yields [233]
c@BED _ _ygi—s, (16.85)

which leads to

| ..miuh.J
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Ou(klk—1) 1 .
Ba, = _C(q)y(k i). (16.86)
Differentiation of (16.84) with respect to b; yields [233]
j(klk—1
C(Q)M—)— =ulk —1), (16.87)
ab;
which leads to
y(klk — 1) 1 ;
= k—1). ;
o C(q)u( 1) (16.88)
Differentiation of (16.84) with respect to ¢; yields [233]
ag(klk —1
ﬁ(k—i|k—i-—1)+0(q)—f‘%—) = y(k—1), (16.89)
which leads to
Oy (k|k — 1 1
gk —1) (y(k —i) — Gk —ilk—i—1)) . (16.90)

dci -~ Clg)

Thus, the gradient can be easily computed by filtering the regressors
—y(k —1), u(k — 1), and e(k — i) = y(k — i) — §(k — ilk — i — 1) through
the filter 1/C(q). The residuals e(k) approach the white noise v(k) as the
algorithm converges.

The drawbacks of the nonlinear optimization approach are the high com-
putational demand and the existence of local optima. The danger of con-
vergence to a local optimum is reduced, however, if the initial parameter
values are close to the optimal ones. In [233] experiences are reported that
the globally optimal parameters of ARMAX models are “usually found with-
out too much problem”, while for OE and BJ models “convergence to false
local minima is not uncommon”.

Multistage least squares for ARMAX model estimation. This algorithm is
sometimes called extended least squares (ELS)®.

1. Estimate an ARX model A(q)y(k) = B(q)u(k) + v(k) from the data
{u(k),y(k)} by

Oprx = (XTX)_I x%y. (16.91)
2. Calculate the prediction errors of this ARX model:
earx (k) = A(q)y(k) — B(g)u(k), (16.92)

where B(g) and A(q) are determined by 8 px.
3. Estimate the ARMAX model parameters a;, b;, and ¢; from (16.82) with
LS by approximating the ARMAX residuals as e(k — i) =~ earnx(k — 7).

# Often ELS denotes the recursive version of this algorithm. Here, for the sake of

clarity the recursive algorithm is named RELS; see Sect. 16.8.3.
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Steps 2-3 of the ELS algorithm can be iterated until convergence is
reached. Then, of course, in Step 2 the residuals from the previously (in
Step 3) estimated ARMAX model are used and in Step 3 the ARMAX resid-
uals are approximated by the residuals of the ARMAX model from Step 2.
The ARMAX prediction error should approach white noise as all information
is going to be exploited by the model and then e(k) approaches the white
noise v(k). Note that the prediction error of the ARMAX model can be ob-
tained by filtering either the ARX model error or u(k) and y(k) in (16.92)
with 1/C(g) as shown in Fig. 16.29. The speed of convergence with the ELS
algorithm may be somewhat faster than with nonlinear optimization. How-
ever, the (mild) local optima problem can, of course, not be solved.

In [233] an ARX model of higher order than m is proposed for Step 1 to
obtain a better approximation of the white noise v(k). Ideally, e(k) converges
to v(k).

The ARMAX model can be extended to the ARIMAX model, where
“I” stands for integration. The noise model is extended by an integrator
to C(g)/(1 — ¢ *)A(g). This allows for drifts in the output signal. Alter-
natively, the data can be filtered with the inverse integrator 1 — ¢! (see
Sects. 16.3.4 and 16.7.5), or the noise model can be made flexible enough
that the integrator is found automatically [233].

16.5.3 Autoregressive Autoregressive with Exogenous Input
(ARARX)

The ARARX model can be seen as the counterpart of the ARMAX model.
While the disturbance is filtered through an MA filter C'(q)v(k) for the AR-
MAX model, it goes through an AR filter 1/D(q)v(k) for the ARARX model.
The ARARX model is not as common as the ARX or ARMAX model since
the additional model complexity often does not pay off.

The ARARX model is depicted in Fig. 16.30 and is described by

1

AlQy(k) = B(gu(k) + ——uv(k). 16.93
) = B@u) + 550(b) (16.9)
The optimal ARARX predictor is
a(klk —1) = D(q)B(@)u(k) + (1 — D(q)A(a)) (k). (16.94)
l\-'(k)
1
Dig)
u(k) Ba) l qu) k)
Fig. 16.30. ARARX model
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The ARARX predictor is stable even if the A(g) or D(q) polynomials and
therefore the ARARX model itself are unstable,
With (16.94) the prediction error of an ARARX model is

e(k) = D(q)A(q)y(k) — D(q)B(g)u(k). (16.95)

Studying the above equations reveals that the ARMAX model, like the
ARMAX model, is an extended ARX model owing to the introduction of the
filter D(q). If D(q) = 1 the ARARX simplifies to the ARX model. Owing to
the additional filter D(g) the ARARX model is more flexible than the ARX
model. However, because D(q) extends the denominator dynamics compared
with the extension of numerator dynamics in the ARMAX model, the de-
nominator dynamics A(g) cannot be (partly) canceled in the noise model.

Because the noise filter 1/D(g)A(g) contains the model denominator dy-
namics, the ARARX model belongs to the class of equation error models.
This is also obvious from the ARARX configuration depicted in Fig. 16.31;
see Fig. 16.24. If A(q) = A(q), B(q) = B(q), and D(g) = D(g) the residuals
e(k) are white. Thus D(g)A(g) acts as a whitening filter.

The parameters of the ARARX model can be estimated either by a non-
linear optimization technique or by a repeated least squares and filtering

approach [172].
Nonlinear optimization of the ARARX model parameters.

1. Estimate an ARX model A(q)y(k) = B(q)u(k) + v(k) from the data
{u(k),y(k)} by

b= 1) " X (16.96)

2. Optimize the ARARX model parameters with a nonlinear optimization
technique. The ARX model parameters obtained in Step 1 can be used as
initial values for the a; and b; parameters. The gradients of the model’s
prediction (16.94) can be computed as follows.

Differentiation of (16.94) with respect to a; yields [233]

9y (’“_é‘)k =L W (16.97)
a;
Differentiation of (16.94) with respect to b; yields [233]
g(klk —1
ay(kl ) o D((})U(k o 3) ] {1698)
ab;
Differentiation of (16.94) with respect to d; yields [233]
og(klk —1 : : 2
WEE=D) — Blou(k—i)- Alay(k—i) = —eanx(k—i).(16.99)
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Fig. 16.31. ARARX model in equation error configuration

16.5 Models with Qutput Feedback 499

Repeated least squares and filtering for ARARX model estimation (generalized
least squares (GLS)).

1. Estimate an ARX model A(¢)y(k) = B(q)u(k) + v(k) from the data
{u(k),y(k)} by

Banye = (XTX) 7 X"y (16.100)
2. Calculate the prediction errors of this ARX model:
earx (k) = A(Q)y(k) — B(g)u(k), (16.101)

where B(q) and A(q) are determined by 5.
3. Estimate the d; parameters of the following AR model by least squares
(see Sect. 16.4.1)

1
D(q)

Compare (16.93) and Fig. 16.31a for a motivation of this AR model. The
prediction error ¢(k) in Fig. 16.31a becomes white, i.e., equal to v(k), if
earx (k) in (16.101) is filtered through D(q).

4. Filter the input u(k) and process output y(k) through the estimated
filter: D(q)

uP(k) = D(q)u(k)  and yP(k) = D(q)y(k). (16.103)

5. Estimate the ARARX model parameters a; and b; by an ARX model es-
timation with the filtered input «” (k) and output y*(k); see Fig. 16.31b.

eanx (k) = ——v(k). (16.102)

Steps 3-5 of the GLS algorithm can be iterated until convergence is
reached.

16.5.4 Output Error (OE)

Together with the ARX and ARMAX model the OE model is the most widely
used structure. It is the simplest representative of the output error model
class. The noise is assumed to disturb the process additively at the output,
not somewhere inside the process as is assumed for the equation error models.
Output error models are often more realistic models of reality, and thus they
often perform better than equation error models. However, because the noise
models do not include the process denominator dynamics 1/A4(g), all output
error models are nonlinear in their parameters and consequently they are
harder to estimate.
The OE model is depicted in Fig. 16.32, and is described by
_ B(g)

y(k) = F—@u(;ﬂ) + v(k). (16.104)

It is standard in linear system identification literature to denote the de-
nominator of process models belonging to the output error class as F(gq),



500 16. Linear Dynamic System Identification
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Fig. 16.33. OE model in parallel to the process

while the denominators of equation error models such as ARX, ARMAX,
and ARARX are denoted as A(g) [233]. Of course, these are just notational
conventions to emphasize the different noise assumptions; a model denoted
as B(q)/A(q) can be exactly identical to a model denoted as B(q)/F(q).

The optimal OE predictor is in fact a simulator because it does not make
any use of the measurable process output y(k):

B(g)
F(q)
Note that the notation “|k—1" can be discarded for the OE model because
the optimal prediction is not based on previous process outputs.
Furthermore, note that the OE predictor is unstable if the F'(¢) poly-
nomial is unstable. Therefore the OE model cannot be used for modeling
unstable processes. The same holds for all other models belonging to the
class of output error models.
With (16.105) the prediction error of an OE model is
= - E@ 16.106
efk) = y(k) = Ty (k). (16.106)
Figure 16.33 depicts the OE model in parallel to the process. The prediction
error of the OE model is the difference between the process output and the
simulated model output. The disturbance n(k) is assumed to be white.
Figure 16.34 relates the residuals of an OE model to the residuals of an
ARX model. Owing to the equation error configuration of the ARX model
(see Fig. 16.24c) the ARX model residuals can be interpreted as filtered OE
residuals:

earx(k) = F(q) eor(k). (16.107)

j(k|k — 1) = g(k) = u(k). (16.105)
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€ox(k) 2arx(k)
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Fig. 16.34. Relationship between ARX model residuals and OE model residuals.
The ARX model residuals can be obtained by filtering the OE model residuals
through F(q)

Assume that F(q) = F(q) and B(g) = B(q). If the process noise is white
(n(k) = v(k)) then eor (k) = v(k) is white as well, while earx (k) = F(q)v(k)
is correlated. If, however, the process noise is correlated such that n(k) =
1/F(q)u(k) then epr(k) = 1/F(qg)u(k) is correlated, while earx (k) = v(k) is
white. This relationship allows an output error parameter estimation based
on repeated linear least squares and filtering, although the parameters are
nonlinear. In the above discussion F(q) and F'(g) can be replaced by A(q)
and A(q) if the argumentation is starting from the ARX model point of view.

It is helpful to illuminate why the predicted output of an OE model is
nonlinear in its parameters (see (16.105))

glk) = bu(k —1) + ...+ bpu(k —m)
- hylk=1)—...— fmi(k —m). (16.108)

Compared with the ARX model, the measured output in (16.50) is replaced
with the predicted (or the simulated, which is the same for OE) output
in (16.108). Here lies the reason for the nonlinearity of the parameters in
(16.108). The predicted model outputs 3(k — ) depend themselves on the
model parameters. So in the terms f; y(k — ) both factors depend on model
parameters, which results in a nonlinear dependency. To overcome these dif-
ficulties one may be tempted to approximate in (16.108) the model outputs
i(k — 1) by the measured process outputs y(k — 7). Then the OE model sim-
plifies to the ARX model, which is indeed linear in its parameters.

The parameters of the OE model can be estimated either by a nonlinear
optimization technique or by a repeated least squares and filtering approach
exploiting the relationship to the ARX model [193].

Nonlinear optimization of the OF model parameters.

1. Estimate an ARX model F(q)y(k) = B(q)u(k) + v(k) from the data
{u(k),y(k)} by

Banx = (XTX) 7" X"y, (16.109)

where the parameters in § are now denoted as fi and b; instead of a; and
b;.

2. Optimize the ARARX model parameters with a nonlinear optimization
technique. The ARX model parameters obtained in Step 1 can be used as
initial values for the f; and b; parameters. The gradients of the model’s
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prediction (16.105) can be computed as follows. First, (16.105) is written
in the following form:

F(q)j(k) = Blqu(k). (16.110)
Differentiation of (16.110) with respect to b; yields

F(q)ai(k—) = u(k —1), (16.111)
ob;
which leads to
9k _ Lo 16.112
o -~ Flg) u(k —1) . ( )
Differentiation of (16.110) with respect to f; yields
ik
gk —i) + F(Q)a%g;_—) =0, (16.113)
which leads to
9y (k) L . ;
—— = ———f(k—1). (16.114)
of, = F@"* 7Y

Repeated least squares and filtering for OF model estimation.

1. Estimate an ARX model F(q)y(k) = B(q)u(k) + v(k) from the data
{u(k),y(k)} by

Barx = (XTQQ)_l_‘KTQ, (16.115)

where the parameters in § are now denoted as f; and b; instead of a; and
b;.
2. Filter the input u(k) and process output y(k) through the estimated filter
F(g):
1

uf (k) = u 1 E =A—1w k). 16.116
u (k)_p(q) (k) and y"(k) F(q)y() ( )

3. Estimate the OE model parameters f; and b; by an ARX model estima-
tion with the filtered input u¥ (k) and output y¥ (k); see Fig. 16.34.

Steps 2-3 of this algorithm can be iterated until convergence is reached.
This algorithm exploits the relationship of the ARX and OE model prediction
errors. It becomes intuitively clear from another point of view as well. In
Sects. 16.3.4 and 16.7.4 it is shown that a noise model and filtering with the
inverse noise model are equivalent. Thus, the ARX noise model 1/A(q) has
the same effect as filtering of the data through A(g). The filtering with I/F.{q)
in (16.116) tries to compensate this effect, leading to the noise model 1, which
corresponds to an OE model.
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16.5.5 Box-Jenkins (BJ)

The Box-Jenkins (BJ) model belongs to the class of output error models. It is
an OE model with additional degrees of freedom for the noise model. While
the OE model assumes an additive white disturbance at the process output,
the BJ allows any colored disturbance. It may be generated by filtering white
noise through a linear filter with arbitrary numerator and denominator.

The BJ model is depicted in Fig. 16.35, and is described by

B(g) Cla)
y(k) o) u(k) + D) v(k). (16.117)

Thus, the BJ model can be seen as the output error class counterpart
of the ARARMAX model, which belongs to the equation error class. For
the equation error models the special case D(q) = 1 corresponds to the
ARMAX model and the special case C'(¢) = 1 corresponds to the ARARX
model. These special cases for the BJ model do not have specific names. For
C(q) = D(q) the BJ simplifies to the OE model. Note that the BJ model
can imitate all equation error models if the order of the noise model is high
enough. Then the denominator of the noise model D(g) may (but of course
does not have to) include the process denominator dynamics F(q).

Of all linear models discussed so far the BJ model is the most general and
flexible. It allows one to estimate separate transfer functions with arbitrary
numerators and denominators from the input to the output and from the
disturbance to the output. However, on the other hand the flexibility of the
BJ model requires one to estimate a large number of parameters. For most
applications this is either not worth the price or not possible owing to data set
that are too small and noisy. Consequently, the BJ model is seldom applied
in practice. -

The optimal BJ predictor is
B@D() . Cla) = Dla)
F(q)C(q) Clg)

Note that the notation “|k —1" cannot be discarded as for the OE model
because the optimal prediction of a BJ model utilizes previous process out-
puts in order to extract the information contained in the correlated distur-

bances n(k) = C(q)/D(q)v(k).

J wk)

@
Dig)

Glklk —1) = y(k) . (16.118)

u(k) Blg) HE)
- o T
Flg)

Fig. 16.35. Box-Jenkins model
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With (16.118) the prediction error of a BJ model is
D(q) B(q)D(q)
2(k) = k) — u(k) . (16.119)
«®) = 20"~ Fll
Typically, a BJ model is estimated by nonlinear optimization, where first
an ARX model is estimated in order to determine the initial parameter val-

ues for b; and f;. The gradients of the model’s prediction (16.118) can be
computed as follows. First, (16.118) is written in the following form:

F(q)C(@)i(klk—1) = B(g)D(q)u(k)+F(q)(C(q) — D(a))y(k).(16.120)
Differentiation of (16.120) with respect to b; yields

Ai(klk —1 y
Fo@2EE =D pgug - i), (16.121)
which leads to
Ay (klk = 1) D(q) .
= u(k —1). (16.122)
db; F(q)C(q)
Differentiation of (16.120) with respect to ¢; yields

a5(klk — 1)

F(q) (g(k —ilk—i-1)+Cl@—5- ) = F(q)y(k —1),(16.123)

which leads to
ogklk—1) 1

= —i)—gk—=ilk—1-1)). 16.124
B 0 (y(k —i) —g(k —ilk —i—1)) ( )
Differentiation of (16.120) with respect to d; yields
Fo@Z¥E D - pguk—i) - F@uk-9,  (16129)
which leads to
dy(klk=1) _ Blqg) oL 16.126
s - Fo@ ) T oU* Y Sl
Differentiation of (16.120) with respect to f; yields
ot (otk -tk - -1+ P PEED) = ~Da(r-0) 00120
which leads to
dpkle—1) _ 1 (D(Q)q —i)+9 k—’k-—'—l). (16.128)

(1M
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16.5.6 State Space Models

Instead of input/output state space models can also be considered. A state
space OE model takes the following form:

z(k+1) = Az(k) + bu(k) (16.129a)
y(k) = cTz(k) + v(k). (16.129b)
The easiest and most straightforward way to obtain a state space model

from data is to estimate an input/output model, e.g., an OE model (see
Sect. 16.5.4),

y(k) = %u(k) + v(k) (16.130)
and use these parameters in a canonical state space form, e.g.,
0 1 -0 0
. - : BN I :
zk+1)= 3 b e | z(k) + & u(k) (16.131a)
_fm _fm-—l _fl 1
Y(k) = [bm bn—r -~ b1 ] z(k) + v(k). (16.131b)

The major advantage of a state space representation is that prior knowl-
edge from first principles can be incorporated in the form equations and
can be utilized to pre-structure the model [186]. Furthermore, the number
of regressors is usually smaller in state space models than in input/output
models. For a system of mth order a state space model possesses m+1 regres-
sors (z1(k),...,om(k) and u(k)) while an input/output model requires 2m
regressors (u(k —1),...,u(k —m) and y(k —1),...,y(k —m)). The smaller
number of regressors is not very important for linear systems. However, for
nonlinear models this is a significant advantage since the number of regressors
corresponds to the input dimensionality; see Sect. 17.1. Finally, for processes
with multiple inputs and outputs the state space representation is well suited.
For a direct identification of state space models the following cases can be
distinguished:

e If all states are measurable the parameters in A, b, and ¢ can be esti-
mated by a linear optimization technique. Unfortunately, the true states
of the process will seldom lead to a canonical state space realization as in
(16.131a) and (16.131b). Thus, without any incorporation of prior knowl-
edge all entries of the system matrix and vectors must be assumed to
be non-zero. For an mth order model with such a full parameterization
m? + 2m parameters have to be estimated. Usually this can only be done
if a regularization technique is applied to reduce the variance error of the
model; see Sects. 7.5 and 3.1.4.



